Reconstruction Performance of the ATLAS Muon Detector

FRONTIER DETECTORS FOR FRONTIER PHYSICS, 13th Pisa Meeting on Advanced Detectors (2015)

Muon reconstruction in LHC Run-I: Performance measured in Inner Detector (ID) & Muon Spectrometer (MS) using $Z \rightarrow \mu\mu$, $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$

Efficiency: ~ 99% over $|\eta| < 2.5 \& p_T > 4 GeV$

Momentum scale (MS+ID muons) known to ±0.05% for $|\eta| < 1$, ±0.2% for $|\eta| > 2.3$ (Z $\rightarrow \mu\mu$) Di-muon mass resolution: low $p_T = 1.2\%$ (2%) & 2% (3%) at $p_T \approx 100$ GeV for $|\eta| < 1$ ($|\eta| > 1$). Simulation reproduces data resolution within 3% to 10% depending on η and p_{τ} .

Muon Types

Combined CB: ID + MS Stand-Alone SA: MS only Segment-Tagged ST: ID track extrapolated to MS segment Calo-tagged: ID track associated with MIP-level dE/dX in calorimeter

Efficiency Measurement Method

Tag & Probe: two opposite charge, $\Delta \phi > 2$ (back to back) track-isolated

Muon Reconstruction Efficiency

Left: Z-tag: CB isolated muon at p_T >24 GeV triggering the event, Z-probe: muon with $p_T > 10$ GeV CB/SA for ϵ (CB/SA | ID) or CaloTag ε (CB/ST | MS). Includes backgrounds: $Z \rightarrow \tau \tau$, t-tbar, $W(\rightarrow \mu + \nu) + jets$

muons in $|\eta| < 2.5$ from Z, J/psi

Use both ID and MS to determine reconstruction efficiency.

MC Muon Momentum Correction

Corrections binned in (η, φ) regions of Det=ID or MS, where the momentum scale & resolution are ~uniform

$$p_{\rm T}^{\rm Cor, Det} = \frac{p_{\rm T}^{\rm MC, Det} + \sum_{n=0}^{1} s_n^{\rm Det}(\eta, \phi) (p_{\rm T}^{\rm MC, Det})^n}{1 + \sum_{m=0}^{2} \Delta r_m^{\rm Det}(\eta, \phi) (p_{\rm T}^{\rm MC, Det})^{m-1} g_m}$$

g_m: normally distributed random variables (mean=0 width=1)

relative scale correction s_n

 s_0 : term to model the p_T -scale dependent difference data-MC in the momentum reconstruction due to energy loss in the calorimeter ($\rightarrow s_0^{ID}=0$)

s₁: imperfect knowledge of B-field integral and detector radial dimension

- p_{T} -dependent momentum smearing $\Delta r_{m} \rightarrow$ $\sigma(p_T)/p_T = r_0/p_T + r_1 + r_2 \cdot p_T$ components (summed in quadrature +) r_0 : from dE/dX fluctuations in the traversed material ($r_0^{ID}=0$)
- r_1 : from multiple scattering, local B-field inhomogeneity, local radial displacement

Right-Bottom: reconstruction efficiency vs <#inelastic collisions>/bunch crossing

statistical uncertainty statistical + systematic uncertainties

Data distributions are well predicted by the MC simulation → scale factors = ϵ (Data)/ ϵ (MC) ≈ 1 in each (η, ϕ) regions

 \rightarrow no significant p_T dependence

Di-Muon Mass Scale and Resolution

10²

 $\overline{p}_{T}^{}, p_{T}^{*}$ [GeV]

10

 10^{2}

 $\overline{p}_{T}^{}$, p_{T}^{*} [GeV]

 r_2 : hit resolution, small misalignments

Total resolution smearing correction (over 18 η detector regions p_T dependent) ID<10% MS<15%

ID scale correction always < 0.1% with uncertainty ranging from 0.02% (|η|<1) to 0.2% (|η|>2.3)

MS scale correction ≤ 0.1% except in barrel large sectors (≈0.3%) and for 1.2<|η|<1.5 (-0.4%)

Claudio Ferretti, for the ATLAS Collaboration

10

 10^{2}

 $\overline{p}_{T}^{}$, p_{T}^{*} [GeV]

ATLAS

|ml<1

1.004

1.003

1.002

1.001

0.999

0.998

0.997

0.995

D The **D**