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ITS upgrade

» Main goal: replacement of ALICE Inner
Tracking System (ITS) during LHC long
shutdown |l in 2018-2019

» Design objectives:
> Increased spatial resolution:

» < 5pm in longitudinal and transverse Upgrade of the
Inner Tracking System

directions
» Closer to interaction point:
> move to r =23 mm
> Reduced material:
> aiming at < 0.3% X for innermost layers
> additional benefit from thinner beam pipe

> Increased readout speed: CERN-LHCC-2013-24
> Record 50 kHz Pb—Pb collisions (minimum fully approved
bias)
ALICE
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> aiming at < 0.3% X for innermost layers
> additional benefit from thinner beam pipe ST

IOP Publishing
» Increased readout speed: J. Phys. G 41 087002

> Record 50 kHz Pb—Pb collisions (minimum
bias)
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Detector design
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» 7 layers of monolithic active pixel sensors (MAPS)

» 3 layers in inner barrel with X/Xo ~ 0.3% from r =23 mm
» 242 layers in outer barrel with X/Xp ~ 1% to R = 400 mm
» Total area of about 10 m?

» Coverage: 27 x (|n| < 1.22) for 90 % most luminous region

ALICE
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Sensor requirements

Parameter Inner Barrel Outer Barrel
Sensor thickness 50 pum 50 pm
Spatial resolution 5um 10 pm
Dimensions 15mm x 30 mm 15mm x 30 mm
Power density 300 mW cm—2 100 mW cm—2
Time resolution 30 ps 30ps
Detection efficiency 99 % 99 %

Fake hit rate* 107> 1073

TID radiation hardness** 2700 krad 100 krad

NIEL radiation hardness** 1.7 x 10'3 1 MeVne,/cm? 1012 1 MeVneq/cm?

* per pixel and readout
** including a safety factor of 10, revised numbers wrt. TDR

~ Well suited for Monolithic Active Pixel Sensors
» Two (pin-)compatible sensors are being developed:

» ALPIDE (project baseline; this presentation)

» MISTRAL-O (more classical approach, optimised for outer barrel) ALIGE
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@ ALPIDE design and specifications

ALICE

VT A E ) ITS upgrade / ALPIDE 13th Pisa, 28/05/2015 7/23



Architecture

> Use of TowerJazz 180 nm
CMOS Imaging Sensor process B wheeon ) ubiaron
» deep p-well (full CMOS within
matrix)
» high density (complex in-pixel
circuitry) —

> In-pixel amplification,
discrimination and hit storage

AMP  COMP

> no transmission of analogue OO0 0nooro D
signals over the matrix
(I
» Combinatorial readout of fired
pixels (“priority encoder”) O L0 E 0000
» reduced digital switching Cs L OE QL0 03E D
(power) I I L A
> hlgher readout Speed OUOOoOUOOUD OO
I T T T T
> POSSIbIIIty to apply mOderate | Buffering and Interface ‘
(<8V) reverse substrate bias ALICE
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» Dimensions
» 1.5cm x 3cm, 512 x 1024 (rows X columns) 28 pm X 28 pm pixels
> total thickness: 50 ym, epitaxial layer (>1 k2 cm) thickness: 18 pm
» Power supply
> analogue: 11mA at 1.8V
> digital: 90mA at 1.8V
» total: 40mW cm—2
Interface
» flip chip mounted onto flex PCB using pads over matrix
> high-speed serial link (1.2 Gb/s 8b10) driver capable of driving 5m
cables
Detection efficiency and fake rate
> >99% at <107 fake hits per pixel and event
Resolution
» space: ~5pm (tested with perpendicular MIPs)
> time: /=2 ps

Radiation tolerance
» 1.7 x 101 1 MeVneq/cm? (NIEL)
» 2700krad (TID) ALICE
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Principle of operation

Charge creation & collection
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» Charge is created in the epitaxial layer
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Principle of operation

Charge creation & collection Signal detection & shaping

NWELL NMOS
DIODE TRANSISTOR

PMOS.
TRANSISTOR

NWELL

DEEP PWELL

Signal (a.u.)

Epitaxial Layer P~

‘Tlme‘(a.u.)‘

» Charge is created in the epitaxial layer

» Signal is shaped:
> rise-time: <2 ps (defines timing resolution)
> total pulse length: 10 ps to 20 ps
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Principle of operation

Charge creation & collection Signal detection & shaping
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» Charge is created in the epitaxial layer

» Signal is shaped:
> rise-time: <2 ps (defines timing resolution)
> total pulse length: 10 ps to 20 ps

» Front-end acts as delay line
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Principle of operation

Charge creation & collection Signal detection & shaping Multiple-event memory

biooe TRANSISTOR | TRANSISTOR D Q
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Epitaxial Layer P- E
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—
continuously active

v

Charge is created in the epitaxial layer
Signal is shaped:
> rise-time: <2 ps (defines timing resolution)
> total pulse length: 10 ps to 20 ps
Front-end acts as delay line
Signal is strobed into memory

> either upon trigger
» or with constant frequency (continuous/"trigger-less” operation)

v

vy
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Principle of operation

Charge creation & collection Signal detection & shaping Multiple-event memory
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continuously active
» Charge is created in the epitaxial layer
» Signal is shaped:

> rise-time: <2 ps (defines timing resolution)
> total pulse length: 10 ps to 20 ps
Front-end acts as delay line
Signal is strobed into memory

> either upon trigger
» or with constant frequency (continuous/"trigger-less” operation)

> Hit pixels are read out asynchronously ALICE
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In-pixel front-end circuit
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Pixel front-end
Pixel front-end
Pixel front-end
Pixel front-end

Periphery

Bias Clock Control Pulser Data
+trigger

» The matrix is read out asynchronously and sparsely by use of 512
priority encoders

» High speed serial point-to-point link with up to 1.2 Gb/s (8b/10b) for
data readout

» Serial bus for configuration and triggering (=40 MHz)
» More details in Adam Szczepankiewicz's presentation later today ALIGE
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€ ALPIDE prototypes
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Prototype generations

Timeline Layout Pixels

Exzrfllz:er 90 x 90 (20um x 20um)
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not to scale
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Prototype generations

Timeline
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Prototype generations
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Prototype generations

Timeline Layout Pixels
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Prototype generations

Timeline Layout Pixels
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Early 2016 . .
ALPIDE Preseries production
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pALPIDE-1 specifications

> Pixel pitch: 28 ym x 28 pm

» Power consumption: <40 mW cm—2

» Diode: 4 different flavours

1 um spacing |2 um spacing | 2 um spacing| 4 um spacing
PMOS reset | PMOS reset

» Multiple-event memory: 1 register

(ALPIDE: 3)
» Readout: 8-bit 40 MHz parallel interface 0
(ALPIDE: high-speed serial link) N — 1

EJ |7 B T
pwell nwell well
doep puicl deop pwel

p- epitaxial layer

» Peaking time: 2 ps

P substrate

> Pulse length: 10 ps to 20 ps b S ol Smeo o Vs
> Fake-hit rate: <10~ per pixel and event .. :
» Detection efficiency: >99 % &= ' i
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@ Beam test results

ALICE
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Test beam set-up

> Test beams are carried out using
a telescope made entirely of
pALPIDE-1

» Extensive campaign with beams
at PS, SPS, PAL (Korea), BTF
(Italy), DESY (Germany)

> In the following: results with
6 GeV/c m~ from CERN PS

» Tests before and after neutron
irradiation
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Many thanks to our
colleagues from the host
institutes for their excellent
support!
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Detection efficien
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Detection efficien
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Detection efficien
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Spatial resolution

Spatial resolution

=
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» Average cluster sizes of 1.5-3 pixels

» Spatial resolution of around 4.5 pm to 5.5 pum

ALICE
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Spatial resolution

Spatial resolution Cluster size
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» Average cluster sizes of 1.5-3 pixels
» Spatial resolution of around 4.5 pm to 5.5 pum

~~ Can use telescope tracking to study properties differential in track

impinging point
» Cluster size varies nicely leading to good intrinsic resolution
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@ Summary & Outlook
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Summary & Outlook

» Comprehensive R&D program is being carried out to develop and
qualify a MAPS for the ALICE ITS upgrade

» Full-scale prototype chips show expected performance
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Summary & Outlook

» Comprehensive R&D program is being carried out to develop and
qualify a MAPS for the ALICE ITS upgrade

» Full-scale prototype chips show expected performance

» Remaining blocks are being integrated into the next generations of
prototypes:
» inclusion of inter-chip communication, enabling the fabrication of
detector modules/staves:
pALPIDE-2 (silicon received last month)
> inclusion of high-speed link and multiple-event memories:
pALPIDE-3 (about to be submitted for fabrication)

» Qualification of larger detector assemblies (modules, staves)
» Final submission of pALPIDE

HLIT
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The pALPIDE-1

Thank you ~veny~° much ',
* for your-attention!-
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