

jean-louis Faure

CEA-Saclay: DSM/IRFU/SPP

on behalf of CMS collaboration

in

13th Pisa Meeting on Advanced Detectors

The CMS Detector

CMS Upgrade Program

HCAL upgrade: photodetectors and electronics (HF 2015/2016 YETS, HB/HE during LS2)

Preparatory work during LS1

- New beam pipe
- Install test slices (*Pixel*, *HCAL*, *L1-trigger*)

LS1: January 2013 – December 2014 (24 mos) Extended Year End Technical Stop (EYETS): December 2016-April 2017 (19 weeks) LS2: July 2018 – December 2019 (18 mos) LS3: January 2023 – June 2025 (30 mos)

CMS Upgrade Program In Elba Meeting

13th Pisa Meeting on Advanced Detectors

jean-louis Faure

Poster: Sophie Mallows : Monte Carlo simulations of the radiation environment for the CMS Experiment

CMS during LS1

• New detectors / components

- RPC: installation of new RE4 chambers
- CSC: installation of new ME4/2 chambers and new on and off chamber electronics for ME1/1
- Trigger: new hardware, moving on path to full trigger upgrade
- DAQ: new DAQ2 (hardware and software) and new Trigger and Clock Distribution System
- +New beam pipe with smaller diameter: prepare for new pixel detector
- +New YE4 shielding

Detector repairs and improvements

- Plxels removed to repair faulty channels
- Tracker sealing to operate at -20°C (4C during run 1)
- DT: readout electronics moved
- HCAL: replacing HO HPDs with SiPMs, replacing HF PMTs, new Clock Control Modules
- ECAL: new serial links for trigger, new laser, DAQ upgrades

General Consolidation

Muon System in Run 2

- CMS Muon System has three sub-systems: Drift Tubes (DT),
 Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC)
- Removal, revision, re-installation of ME1/1 chambers
- 4th muon station added: 72 (144) new CSC (RPC) chambers

Drift Tubes for Run2

Sector Collector (Read-Out and Trigger) relocated out of UXC: installed 3500 optical links that make single outputs of all 250 chambers available in USC

CSC consolidation

ME1/1 refurbishment lab in SX5

ME1/1 chamber electronics upgrade

72 chambers extracted, refurbished and reinstalled in CMS. Increase capacity for data rate and exploit full chamber segmentation in $2.1 < |\eta| < 2.4$ to enhance rate capability (including @ HL-LHC) and improve muon reconstruction

Present system consolidation, maintenance and repair Repair system faults from Run 1 –> recover highest efficiency. Improve system reliability (HV, LV, racks, detector infrastructure)

Completion of station 4 (ME4/2 ring $1.2 < |\eta| < 1.8$)

Re-establish 4-station redundancy over all 0.9<| η |<2.4 range. Improve muon-ID efficiency and sustain high-Lumi L1 rates at a reasonably low pT threshold

ME4/2 installation

ME4/2 chamber factory in B904

RPC (RE4) for Run2

RE-4/3/28

RE-4/3/29

144 chambers installed

CMS CERN LHC-P5 May 2014 Cessy / France

CMS

photo by michael.hoch@cern.ch

LS1: Muon performance improvements

Trigger performance: significantly lower threshold for same rate

CSC and RPC: ME4/2 (1.25< $|\eta|$ <1.8)

More hits, lower rates

CSC: ME1/1 (2.1< $|\eta|$ <2.4) new digital boards and trigger cards : higher strip granularity Electronics reliability

DT: new trigger readout board and relocation of sector collector from UXC55 to USC55 (new optical links)

Tracker running cold (-20degrees)

Si tracker operation at -15 C commissioned (tested to -20), Pixel -20 C (tested -25)

Bulkhead with insulation

More detail in Poster of Lorenzo Viliani

New dry gas plant

New beampipe

Isla

HCAL

HF: switch to multi-anode PMTs and uTCA BE electronics

New Thin window, dual-.-anode to reduce Cherenkov noise from punch through muons

HBHE: control modules Replacement and misc repairs

Δ

CM

Beam Radiation Instrumentation and Luminosity measure backgrounds, protect the experiment and measure luminosity

13th Pisa Meeting on Advanced Detectors

Beam Radiation Instrumentation and Luminosity measure backgrounds, protect the experiment and measure luminosity

DAQ

&

Triggers

DAQ1<---->DAQ2

13th Pisa Meeting on Advanced Detectors

jean-louis Faure

18

CMS

New or upgraded detectors in CMS

- Several detectors / online-systems being upgraded to cope with higher luminosity
- Increase of event size
- Readout electronics of upgraded systems based on µTCA

- 2014: New Trigger Control and Distribution System
- 2014: Stage-1 calorimeter trigger upgrade
- 2014/15: new HCAL readout electronics
 - 2016: Full trigger upgrade
 - 2017: New pixel detector and readout electronics

SLINK express sender = IP-core uTCA electronics

"AMC-13" card used by many subsystems

Fragment size 2..8 kB

Optical SLINK-express 4 Gb/s (soon 10 Gb/s) - retransmit

> Frontend-Readout Optical Link

+ 50 new Links: SLINK-express (170 after pixel upgrade)

DAQ2 for Run2

new Timing and Control and Distribution System: TCDS

Motivation:

-New partitions required for upgrade and future detector

-Merging logically different components: L1 trigger and Timing and Control system

13th Pisa Meeting on Advanced Detectors

L1 Trigger Upgrade Calorimeters

• Upgrade to ECAL Level-1 trigger: change links between ECAL Trigger Concentrator Cards (TCC) and Regional Calorimeter Trigger (RCT)

jean-louis Faure

L1 Trigger Upgrade: Muon Trigger

- Build up new Muon Track Finders in 2015 and commission in parallel (ready for physics by 2016)
- Full split of CSC signals installed and tested
- Split a slice of the DT and RPC signals to commission the new trigger

13th Pisa Meeting on Advanced Detectors

Improvements of High Level Trigger [HLT]

8 TeV → 13 TeV Factor ~2 in cross-section from the increased energy Factor > 2 for multiple object triggers (due to combinatorial)

50 ns → 25 ns bunch spacing Increased level of out of time pileup

Peak luminosity from ~7e33 cm-2s-1 to 1.4e34 cm-2s-1 Factor 2 in rate

Rate x 4 (at least) In time pileup from <PU> ~ 25 (Run1) up to <PU> ~ 40 (Run2) Out of time pileup has a much larger impact than at Run1

Reminder L1 ~ 100 kHz and HLT output rate ~1 kHz

Use of Particle Flow (PF) at the HLT level

Major directions driving the developments were: pileup mitigation, both for in-time and out-of-time pileup improved efficiency for high-pt general improvements to the algorithms building on experience in Run 1

Improvements of HLT exemple_1

Tracking improvements

Effect of **pileup subtraction** on the 2015 "PF cluster based" isolation, and comparison of performance with the one used at Run1

Improvements of HLT exemple_2

Local reconstruction: multi-performance Compare black to red for PU20 BX25:

In words: A relative improvement is achieved in the $E_{5\times5}/E_{true}$ energy measured using the multifit method w.r.t. the 3+5 weights, of about 10% (7%) for photons in EB (EE) with E_T in (30, 100) GeV and of \approx 50% (\approx 34%) for photons in EB (EE) with E_T in (5-10)

federico.ferri@cern.ch

ECAL DPG - December 9, 2014

ECAL

New "multifit" method of local reconstruction validated on simulation and Run I data -Improved performance with high pileup -Will be used offline for 50ns & 25ns running; in HLT for 25ns running 13th Pisa Meeting on Advanced Detectors

Improvements of HLT exemple_3 Muon

L1 updates for 2015

- Additional muon chambers in the • endcaps
- Increased granularity of the CSC ٠ (endcap muon) readout

HLT

Main updates to the Level_3 algorithm for Run2: • Use $\chi 2$ measurement to assign hits to tracker tracks

• Quality filters on tracker tacks become part of the L3

CMS READY FOR RUN 2

Data recorded: 2015-May-21 07:59:01.776704 GMT

Bun / Event / LS: 245194 / 31876157 / 47

First low energy proton-proton collisions after LS1 (900 GeV)

This di-jet event produced from proton-proton collisions was detected in the CMS detector. The total energy is approximately 30 GeV in each jet.

13 TeV proton-proton collisions after LS1 May, 21th

Thank You & Stay tuned

Some Glossary

- BRIL : Beam Radiation Instrumentation and Luminosity
- BHM: Beam Halo Monitor
- PLT: (Si) Pixel Luminosity Telescope
- BCMxx: Beam Condition Monitor