Status after the first LHC run Looking for new directions in the physics landscape

Antonio Pich IFIC, Univ. Valencia - CSIC

13th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, 24-30 May 2015

A New Higgs-Like Boson

 $H \rightarrow ZZ^* \rightarrow 4\ell$

5 = 7 TeV, L = 5.1 fb⁻¹; 5 = 8 TeV, L = 19.7 fb

$M_{H}\,=\,(125.09\pm0.21\pm0.11)~GeV$

Great success of the Standard Model

BEGHHK (= Higgs) Mechanism

 $SU(2)_L \otimes U(1)_Y$ v = 246 GeV

$$M_Z \cos \theta_W = M_W = \frac{1}{2} v g$$

3

Theory Highlights & Outlook

Beautiful Discovery Boson, J = 0Fermions = Matter : Bosons = Forces

- Fundamental Boson: New interaction which is not gauge
- Composite Boson: New underlying dynamics

Beautiful Discovery Boson, J = 0Fermions = Matter ; Bosons = Forces

- Fundamental Boson: New interaction which is not gauge
- Composite Boson: New underlying dynamics
 - If New Physics exists at Λ_{NP}

$$\delta M_H^2 \sim \frac{g^2}{(4\pi)^2} \Lambda_{\rm NP}^2 \log\left(\frac{\Lambda_{\rm NP}^2}{M_H^2}\right)$$

Which symmetry keeps M_H away from Λ_{NP} ?

- Fermions: Chiral Symmetry
- Gauge Bosons: Gauge Symmetry
- Scalar Bosons: Supersymmetry, Scale/Conformal Symmetry ...?

Possible Scenarios of EWSB

1 SM Higgs: Favoured by EW precision tests

2 Alternative perturbative EWSB:

Scalar Doublets and singlets

$$\rho_{\text{tree}} = \frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_i v_i^2 [T_i(T_i + 1) - Y_i^2]}{2 \sum_i v_i^2 Y_i^2}$$

3 Dynamical (non-perturbative) EWSB:

Pseudo-Goldstone Higgs

Scalar Resonance

Possible Scenarios of EWSB

1 SM Higgs: Favoured by EW precision tests

2 Alternative perturbative EWSB:

Scalar Doublets and singlets

$$\rho_{\text{tree}} = \frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_i v_i^2 [T_i(T_i+1) - Y_i^2]}{2 \sum_i v_i^2 Y_i^2}$$

3 Dynamical (non-perturbative) EWSB:

Pseudo-Goldstone Higgs

Scalar Resonance

7,2 7

4.5

3.5

3 2.5

SM fit with M. measurement SM fit w/o M, measurement

ATLAS measurement [arXiv:1406.3827]

CMS measurement [arXiv:1407.0558]

G fitter

190 m, [GeV]

G fitter

130 140 M_H [GeV]

20

Top Mass

• Monte Carlo mass:

 $m_t^{\text{MC}} = (173.34 \pm 0.76) \; \text{GeV}$

Lacks a proper QCD definition

 $\Delta m_t^{\mathrm{th}} = |m_t^{\mathrm{pole}} - m_t^{\mathrm{MC}}| \approx \mathcal{O}(1 \ \mathrm{GeV})$

Hoang-Stewart 0808.0222

Top Mass

• Monte Carlo mass:

 $m_t^{\text{MC}} = (173.34 \pm 0.76) \; \text{GeV}$

Lacks a proper QCD definition

 $\Delta m_t^{
m th} = |m_t^{
m pole} - m_t^{
m MC}| pprox \mathcal{O}(1~{
m GeV})$

Hoang-Stewart 0808.0222

• Well-defined mass: $\sigma_{t\bar{t}}$

NNLO + NNLL Czakon et al., Bärnreuther et al., Cacciari et al.

The Heaviest Mass Scale

The top quark:

- Sensitive probe of Electroweak Symmetry Breaking
- Non-perturbative (strong) dynamics?
- Very different from other quarks: $y_b = 0.025$, $y_c = 0.007$...
- Is it really a SM quark?

So far, we only know the decay $t \rightarrow W^+b$ $|V_{tb}| > 0.92$ (95% CL)

$$\Phi(x) = \exp\left\{\frac{i}{v}\vec{\sigma}\vec{\varphi}(x)\right\} \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ v + H(x) \end{bmatrix}$$

$$V(\Phi) + \frac{\lambda}{4}v^4 = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 = \frac{1}{2}M_H^2 H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

$$v = (\sqrt{2} G_F)^{-1/2} = 246 \text{ GeV}$$

 $M_H = (125.09 \pm 0.24) \text{ GeV} \longrightarrow \lambda = \frac{M_H^2}{2v^2} = 0.13$

$$\Phi(x) = \exp\left\{\frac{i}{v}\vec{\sigma}\vec{\varphi}(x)\right\} \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ v+H(x) \end{bmatrix}$$

$$V(\Phi) + \frac{\lambda}{4}v^4 = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 = \frac{1}{2}M_H^2 H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

$$v = (\sqrt{2} G_F)^{-1/2} = 246 \text{ GeV}$$

 $M_H = (125.09 \pm 0.24) \text{ GeV} \longrightarrow \lambda = \frac{M_H^2}{2v^2} = 0.13$

$$\frac{M_{H}^{2}}{2v^{2}} = \lambda(\mu) + \frac{2y_{t}^{2}}{(4\pi)^{2}} \left[\lambda + 3\left(y_{t}^{2} - \lambda\right) \log\left(\mu/m_{t}\right)\right] + \cdots$$

 $y_t = \sqrt{2} m_t / v \approx 1$

RGE scale u in GeV

 $\Lambda = M_{\rm Planck}$ \rightarrow $M_H > (129.6 \pm 1.5) \, \text{GeV}$

Assumes SM valid all the way up to $\Lambda \leq M_{\text{Planck}}$

 $\Lambda = M_{\text{Planck}} \longrightarrow M_H > (129.6 \pm 1.5) \text{ GeV}$ [129.8 ± 5.6]

Alekhin et al, 1207.0980

Assumes SM valid all the way up to $\Lambda \leq M_{\text{Planck}}$

Signal Strengths

- σ(stat.) Total uncertainty ATLAS Preliminary - o (sys inc.) mu = 125.36 GeV ± 1σ on u (theory $H \rightarrow \gamma \gamma$ $\mu = 1.17^{+0.28}$ $H \rightarrow ZZ^*$ $\mu = 1.46^{+0.40}$ $H \rightarrow WW^*$ $\mu = 1.18^{+0.24}$ H → bb $\mu = 0.63^{+0.39}_{-0.37}$ $H \rightarrow \tau \tau$ $\mu = 1.44^{+0.42}$ $H \rightarrow \mu\mu$ $\mu = -0.7^{+3.7}_{-2.7}$ $H \rightarrow Z\gamma$ $\mu = 2.7^{+4.6}$ Combined $\mu = 1.18^{+0.15}$ -1 0 1 2 3 VS = 7 TeV. 4.5-4.7 fb⁻¹ vs = 8 TeV. 20.3 fb⁻¹ Signal strength (u)

$\mu \equiv \sigma \cdot \mathrm{Br} / \left(\sigma \cdot \mathrm{Br} \right)_{_{\mathrm{SM}}}$

Decay Mode	$\begin{array}{l} \textbf{ATLAS} \\ (M_H = 125.36 \text{ GeV}) \end{array}$	$\begin{array}{c} \textbf{CMS} \\ (M_H = 125.0 \text{GeV}) \end{array}$		
$H \rightarrow bb$	$0.63^{+0.39}_{-0.37}$	$\textbf{0.84} \pm \textbf{0.44}$		
H ightarrow au au	$1.44 \substack{+ 0.42 \\ - 0.37}$	0.91 ± 0.28		
$H ightarrow \gamma \gamma$	$1.17^{+0.28}_{-0.26}$	1.12 ± 0.24		
$H \rightarrow WW^*$	$1.18 \substack{+ 0.24 \\ - 0.21}$	$\textbf{0.83} \pm \textbf{0.21}$		
$H \rightarrow ZZ^*$	$1.46 {}^{+ 0.40}_{- 0.34}$	1.00 ± 0.29		
Combined	1.18 + 0.15	1.00 ± 0.14		

 $\langle \mu
angle = 1.09 \pm 0.10$

Production Channels

Status @ May 2015

Strong (indirect) evidence for Higgs coupling to t

Dominant Production Mechanism

$$\kappa_i \equiv g_i/g_i^{\rm SM}$$

$H ightarrow \gamma \gamma$	Signal Strength
ATLAS	$1.17^{+\ 0.28}_{-\ 0.26}$
CMS	1.12 ± 0.24

Direct (tree-level) sensitivity through tTH

Strong evidence for Higgs coupling to au and $extbf{b}$

Signal	ATLAS	CMS	
Strength	$(M_H = 125.36 { m GeV})$	$(M_H=125.0~{\rm GeV})$	
H ightarrow bb	$0.63^{+0.39}_{-0.37}$	0.84 ± 0.44	
H ightarrow au au	$1.44 {}^{+ 0.42}_{- 0.37}$	0.91 ± 0.28	

Status @ May 2015

It is a Higgs Boson

 $\lambda_f = (m_f/M)^{1+\epsilon}$, $(g_V/2v)^{1/2} = (M_V/M)^{1+\epsilon}$

Ellis-You, 1303.3879

Quark Mixing

Successful CKM Mechanism (Tree / Loop / CP-c / CP-v)

Rare Decays

Loop & CKM suppression

Rare Decays

Loop & CKM suppression

Flavour Anomalies

LHCb:
$$(q^2 \in [1, 6] \text{ GeV}^2)$$

 $\frac{\text{Br}(B^+ \to K^+ \mu^+ \mu^-)}{\text{Br}(B^+ \to K^+ e^+ e^-)} = 0.745 \substack{+0.090 \\ -0.074} \pm 0.036$

2.6 σ below the SM

 W^{\pm}

 $B \rightarrow D^{(*)} \tau \nu_{\tau}$

$$R(D^{(*)}) \equiv \frac{\operatorname{Br}(\bar{B} \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\operatorname{Br}(\bar{B} \to D^{(*)}\ell^- \bar{\nu}_{\ell})}$$

R(D) 2.0 σ above SM $R(D^*)$ 2.7 σ above SM

Combined significance 3.4σ

New Belle & LHCb results presented today at FPCP2015

Bounds on New Flavour Physics

$$L_{\rm eff} = L_{\rm SM} + \sum_{D>4} \sum_{k} \frac{C_k^{(D)}}{\Lambda_{\rm NP}^{D-4}} O_k^{(D)}$$

Isidori.	1302.0661

Operator	Bounds on A	in TeV ($c_{\rm NP} = 1$)	Bounds on c _l	Observables	
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	$6.9 imes 10^{-9}$	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^{\mu} u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^{\mu} d_L)^2$	$6.6 imes 10^2$	9.3×10^{2}	$2.3 imes 10^{-6}$	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^3	3.6×10^3	$3.9 imes 10^{-7}$	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.4×10^2	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^2	$8.3 imes 10^2$	$8.8 imes 10^{-6}$	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

- Generic flavour structure [c_{NP}~O(1)] ruled out at the TeV scale
- $\Lambda_{NP} \sim 1$ TeV requires c_{NP} to inherit the strong SM suppressions (GIM)

Minimal Flavour Violation: The up and down Yukawa matrices are the only source of quark-flavour symmetry breaking D'Ambrosio et al, Buras et al

A. Pich

Two-Higgs Doublets $v^2 \equiv v_1^2 + v_2^2$, $\tan \beta \equiv v_2/v_1$

5 scalar fields: H^{\pm} , $\varphi_i^0 = (h, H, A)$ [3 × 3 mixing matrix \mathcal{R}_{ij}]

$$g_{_{HVV}}^2 + g_{_{HVV}}^2 + g_{_{AVV}}^2 = (g_{_{HVV}}^{\rm SM})^2$$

Two-Higgs Doublets $v^2 \equiv v_1^2 + v_2^2$, $\tan \beta \equiv v_2/v_1$

5 scalar fields: H^{\pm} , $\varphi_i^0 = (h, H, A)$ [3 × 3 mixing matrix \mathcal{R}_{ij}]

$$g_{\scriptscriptstyle hVV}^2 + g_{\scriptscriptstyle HVV}^2 + g_{\scriptscriptstyle AVV}^2 = (g_{\scriptscriptstyle hVV}^{\rm SM})^2$$

$$\mathcal{L}_{Y} = -\bar{Q}'_{L} \left(\Gamma_{1} \phi_{1} + \Gamma_{2} \phi_{2} \right) d'_{R} \implies \mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} \bar{Q}'_{L} \left(M'_{d} \Phi_{1} + Y'_{d} \Phi_{2} \right) d'_{R}$$
$$\mathsf{M}'_{f} \& \mathsf{Y}'_{f} \text{ unrelated (not simultaneously diagonal)} \implies \mathsf{FCNCs}$$

Two-Higgs Doublets $v^2 \equiv v_1^2 + v_2^2$, $\tan \beta \equiv v_2/v_1$

5 scalar fields: H^{\pm} , $\varphi_i^0 = (h, H, A)$ [3 × 3 mixing matrix \mathcal{R}_{ij}]

$$g_{\scriptscriptstyle hVV}^2 + g_{\scriptscriptstyle HVV}^2 + g_{\scriptscriptstyle AVV}^2 = (g_{\scriptscriptstyle hVV}^{\rm SM})^2$$

$$\mathcal{L}_{Y} = -\bar{Q}'_{L} \left(\Gamma_{1} \phi_{1} + \Gamma_{2} \phi_{2} \right) d'_{R} \implies \mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} \bar{Q}'_{L} \left(M'_{d} \Phi_{1} + Y'_{d} \Phi_{2} \right) d'_{R}$$
$$\mathsf{M}'_{f} \& \mathsf{Y}'_{f} \quad \mathsf{unrelated} \quad (\mathsf{not simultaneously diagonal}) \implies \mathsf{FCNCs}$$

Solutions: (same for u_R and ℓ_R Yukawas)

• Natural Flavour Conservation: $\Gamma_1 = 0$ or $\Gamma_2 = 0$ (\mathcal{Z}_2 models)

Glashow-Weinberg, Paschos

• Alignment:
$$\Gamma_2 \propto \Gamma_1 \implies Y_{d,\ell} = \varsigma_{d,\ell} M_{d,\ell}$$
, $Y_u = \varsigma_u^* M_u$

Pich-Tuzón, 0908.1554

A. Pich

LHC Fit within \mathcal{Z}_2 Models

$$g_{_{hVV}}/g_{_{hVV}}^{\mathrm{SM}} = \cos \tilde{\alpha} \equiv \sin (\beta - \alpha)$$

$$y_f^h = \cos \tilde{\alpha} + \varsigma_f \sin \tilde{\alpha}$$

Model	Sd	Su	\$I
Type I	$\cot eta$	$\cot\beta$	$\cot\beta$
Type II	$-\tan\beta$	$\cot\beta$	$-\tan\beta$
Type X (III)	$\cot\beta$	$\cot\beta$	$-\tan\beta$
Type Y (IV)	$-\tan\beta$	$\cot\beta$	$\cot\beta$
Inert	0	0	0

- General setting without FCNCs & new sources of CP violation
- Rich phenomenology @ LHC
- Flavour & EDM constraints fulfilled
- Usual \mathcal{Z}_2 models recovered in particular (CP-conserving) limits

Neutrino Oscillations

Lepton Flavour Violation

 $\sin^2 2\theta_{13} = 0.084 \pm 0.005$

Daya Bay, 1505.03456

González-García et al, 1409.5439	NuFIT 2.0 (2014)	
$ U _{3\sigma} = \begin{pmatrix} 0.801 \rightarrow 0.845 \\ 0.225 \rightarrow 0.517 \\ 0.246 \rightarrow 0.529 \end{pmatrix}$	$\begin{array}{c} 0.514 ightarrow 0.580 \\ 0.441 ightarrow 0.699 \\ 0.464 ightarrow 0.713 \end{array}$	$\begin{array}{c} 0.137 \rightarrow 0.158 \\ 0.614 \rightarrow 0.793 \\ 0.590 \rightarrow 0.776 \end{array} \right)$

Flavour mixing is very different for quarks & leptons

Cosmology:

$$\sum_{i} m_{\nu_i} < 0.23 \text{ eV}$$
Status @ May 2015

Planck, 1502.01589

A. Pich

Open Questions in v Physics

Lindner

36

Low-E Effective Theory:

1 SU(2)_L \otimes U(1)_Y invariant operator with d=5 Weinberg $-\frac{c_{ij}}{\Lambda}\overline{L}_i \,\tilde{\phi} \,\tilde{\phi}^t L_j^c + \text{h.c.} \quad \xrightarrow{\text{ssb}} \quad -\frac{1}{2} \,\overline{v}_{iL} M_{ij} \,v_{jL}^c + \text{h.c.} \quad ; \quad M_{ij} \equiv \frac{c_{ij}}{\Lambda} \,v^2$ $\Lambda / c_{ii} < 10^{15} \, \text{GeV}$

Small Majorana Mass: m, > 0.05 eV

Flavour-Violating Higgs Couplings

 $\mathcal{L} = -\mathbf{H} \left\{ Y_{e\mu} \, \bar{e}_{_L} \mu_{_R} + Y_{e\tau} \, \bar{e}_{_L} \tau_{_R} + Y_{\mu\tau} \, \bar{\mu}_{_L} \tau_{_R} + \cdots \right\}$

Flavour-Violating Higgs Couplings

 $\mathcal{L} = -\boldsymbol{H} \left\{ Y_{e\mu} \, \bar{e}_{_L} \mu_{_R} + Y_{e\tau} \, \bar{e}_{_L} \tau_{_R} + Y_{\mu\tau} \, \bar{\mu}_{_L} \tau_{_R} + \cdots \right\}$

A. Pich

Desperately Seeking SUSY (Dulcinea)

In all the world there is no maiden fairer than the Empress of La Mancha, the peerless SUSY del Toboso

> Your worship should bear in mind that SUSY is badly broken; got heavy through anomaly mediation

ATLAS SUSY Searches* - 95% CL Lower Limits

010	11105. 1 60 2015						$v_s = 1, o iev$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fl	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}_{i}, \bar{q}_{i} - q_{i}^{2} \tilde{r}_{i}^{2} \\ \bar{q}_{i}^{*}, \bar{q}_{i} - q_{i}^{2} \tilde{r}_{i}^{2} \\ \bar{s}_{i}^{*}, \bar{s}_{i} - q_{i}^{*} \tilde{r}_{i}^{2} \\ \bar{s}_{i}^{*}, \bar{s}_{i} - q_{i}^{*} \tilde{r}_{i}^{*} \\ \bar{s}_{i}^{*}, \bar{s}_{i} -$	$\begin{matrix} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 c, \mu \\ 2 c, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 c, \mu + \gamma \\ \gamma \\ 2 c, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets - - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	S.2 1.7 TeV m(j)→m(V) 2 250 GeV m(j)→m(V) ⁺ (± part, i) + m(z) ² (= art, i) + m(z) ² (=	1405.7875 1405.7875 1405.7875 1501.03555 1501.03555 1407.0603 ATU-S-CONF-2012-144 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. ğ med.	$\bar{s} \rightarrow b \bar{b} \bar{\chi}_1^0$ $\bar{s} \rightarrow t \bar{\chi}_1^0$ $\bar{s} \rightarrow t \bar{\chi}_1^0$ $\bar{s} \rightarrow t \bar{\chi}_1^+$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 135784/ π ⁰ /γ-490.00 2 11784/ π ⁰ /γ-490.00 2 13784/ π ⁰ /γ-490.00 2 13784/ π ⁰ /γ-490.004/	1407.0600 1308.1841 1407.0600 1407.0600
3rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1 , \tilde{b}_1 \rightarrow \tilde{b} \tilde{\chi}_1^0 \\ & \tilde{b}_1 \tilde{b}_1 , \tilde{b}_1 \rightarrow \tilde{\chi}_1^0 \\ & \tilde{h}_1 \tilde{b}_1 , \tilde{b}_1 \rightarrow \tilde{\chi}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 , \tilde{h}_1 \rightarrow \tilde{b} \tilde{\chi}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 , \tilde{h}_1 \rightarrow \tilde{k} \tilde{h}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 , \tilde{h}_1 \rightarrow \tilde{k} \tilde{h}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 , \tilde{h}_1 \rightarrow \tilde{k} \tilde{h}_1^0 \\ & \tilde{h}_1 \tilde{h}_1 (natural GMSB) \\ & \tilde{h}_2 \tilde{h}_2 , \tilde{h}_2 \rightarrow \tilde{h}_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 e, \mu (SS) \\ 1 - 2 e, \mu \\ 2 e, \mu \\ 0 - 1 e, \mu \\ 0 \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1-2 b 1-2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	H 100530 GeV π(Π)-α κ/s 175-16 (V) 20-400 GeV π(Π)-α κ/s 5, 105-17 GeV 20-400 GeV π(Π)-α κ/s 6, 90-19 (V) 215-500 GeV π(Π)-α κ/s 7, 90-19 (V) 216-500 GeV π(Π)-α κ/s 7, 90-300 GeV π(Π)-π(Λ)-65 GeV π(Π)-π(Λ)-65 GeV 7, 90-300 GeV π(Π)-100 GeV π(Π)-100 GeV 7, 20-560 GeV π(Π)-100 GeV π(Π)-100 GeV	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \bar{\ell}_{L,R} \bar{\ell}_{L,R}, \bar{\ell} \rightarrow \ell \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{*} \bar{\chi}_{1}^{*}, \bar{\chi}_{1}^{*} \rightarrow \bar{\ell} \varkappa (\bar{\nu}) \\ \bar{\chi}_{1}^{*} \bar{\chi}_{1}^{*}, \bar{\chi}_{1}^{*} \rightarrow \bar{\ell} \varkappa (\bar{\nu}) \\ \bar{\chi}_{1}^{*} \bar{\chi}_{1}^{*} \rightarrow \bar{\ell}_{1} \varkappa (\bar{\ell}, \nu), \ell \bar{\ell} \bar{\ell}_{L} \ell (\bar{\nu} \nu) \\ \bar{\chi}_{1}^{*} \bar{\chi}_{2}^{*} \rightarrow \bar{\ell}_{L} \nu \ell_{L} (\bar{\ell} (\bar{\nu} \nu), \ell \bar{\ell} \bar{\ell}_{L} \ell (\bar{\nu} \nu) \\ \bar{\chi}_{1}^{*} \bar{\chi}_{2}^{*} \rightarrow W \bar{\chi}_{1}^{*} h \bar{\chi}_{1}^{*}, h \rightarrow b \bar{b} / W W / \tau \tau / \tau \\ \bar{\chi}_{2}^{*} \bar{\chi}_{2}^{*} \bar{\chi}_{2}^{*} - \bar{\chi}_{R} \ell \end{split} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ γ e, µ, γ 4 e, µ	0 0 - 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	第 95-325 GeV 町(「),-4 GeV パー 148-465 GeV 町(「),-4 GeV パー 100-350 GeV 町(「),-6 GeV パー 100-40 GeV 町(□),-6 GeV パー 100-40 GeV 100-40 GeV	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}$ prod., long-lived \tilde{X}_{1}^{\pm} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{X}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \eta) + \tau(e, \tilde{g}, \tilde{\mu}, \tilde{\chi}_{1}^{0} \rightarrow q_{d}, [RPV]$	Disapp. trk 0 trk µ) 1-2 µ 2 γ 1 µ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	S2 CPG GeV m(7) = 00 ⁻¹ /-10 MeV, v(7) = 02 m 8 532 GeV m(7) = 100 GeV (0, sec 10, sec	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp\!\rightarrow\!\tilde{v}_r + X, \tilde{v}_r \!\rightarrow\! e \!+\! \mu \\ LFV pp\!\rightarrow\!\tilde{v}_r + X, \tilde{v}_r \!\rightarrow\! e \!+\! \mu \\ Bilinear RPV CMSSM \\ \tilde{\mathcal{K}}_1^+ \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \!\rightarrow\! W \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \!\rightarrow\! e \!e \!\tilde{v}_{\mu}, e \!\mu \tilde{v}_r \\ \tilde{\mathcal{K}}_1^+ \tilde{\mathcal{K}}_1^-, \tilde{\mathcal{K}}_1^+ \!\rightarrow\! W \tilde{\mathcal{K}}_1^0, \tilde{\mathcal{K}}_1^0 \!\rightarrow\! e \!e \!\tilde{v}_r \\ \tilde{\mathcal{S}}_r^+ \!a \!q \!q \\ \tilde{\mathcal{S}}_r^- \!a \!q \!q \\ \tilde{\mathcal{S}}_r^- \!a \!r \!q \!r \\ \tilde{\mathcal{S}}_r^- \!a \!r \!r \!r \!r \!r \!r \\ \tilde{\mathcal{S}}_r^- \!a \!r \!r \!r \!r \!r \!r \\ \tilde{\mathcal{S}}_r^- \!a \!r $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	0-3 b - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	1.61 TeV J_m-0.10, J_m-0.05 5 1.1 TeV J_m-0.10, J_m-0.05 4 J 1.35 TeV M_m-0.10, J_m-0.05 4 J 1.35 TeV m(d)=-e(3), erg, erg, 1.1 m) 4 J 750 GeV m(d)=2com(T), J_m erg 4 J 916 GeV m(f)=2com(T), J_m erg 8 916 GeV Be(f)=4B(p)=-B(p)-erg 8 650 GeV Be(f)=4B(p)-Be(p)-erg	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	2 490 GeV m(ℓ ₁ ⁰)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$	/s = 8 TeV artial data	$\sqrt{s} = full$	8 TeV data	1	0 ⁻¹ Mass scale [TeV]	1

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

A. Pich

ATLAS Preliminary

Strong limits on SUSY partners

Tension with Higgs mass:

 $M_h^2 \le M_Z^2 \cos^2(2\beta) + \epsilon$

Improved higher-order calculations allow slightly larger values of M_h

Hahn et al, 1312.4937

Global Fits (LHC, Flavour, DM...)

A. Pich

Which SUSY ?

- Looks bad in CMSSM (120 MSSM parameters reduced to 4 + 1 sign)
- More freedom in the Phenomenological MSSM

• Many SUSY variants: NMSSM, Split, High-Scale, Stealth, 5D, Natural, Folded, Twin...

Naturalness?

 $\Delta M_h^2 \propto M_{\rm SUSV}^2$

CMS Exotica Physics Group Summary - Moriond, 2015

Don Quixote and the Windmills

Look, your worship, it's just the spectrum of the Standard Model

Massive & dark SUSY states show up through a hidden portal from a warped dimension

Effective Field Theory

$$\mathcal{L}_{ ext{eff}} \; = \; \mathcal{L}^{(4)} \; + \; \sum_{D>4} \sum_{i} \; \frac{c_{i}^{(D)}}{\Lambda_{ ext{NP}}^{D-4}} \; \mathcal{O}_{i}^{(D)}$$

- Most general Lagrangian with the SM gauge symmetries
- Light (m $\ll \Lambda_{NP})$ fields only
- The SM Lagrangian corresponds to D = 4
- $c_i^{(D)}$ contain information on the underlying dynamics:

$$\mathcal{L}_{\rm NP} \doteq g_{\chi} \left(\bar{q}_L \gamma^{\mu} q_L \right) X_{\mu} \quad \Longrightarrow \quad \frac{g_{\chi}^2}{M_{\chi}^2} \left(\bar{q}_L \gamma^{\mu} q_L \right) \left(\bar{q}_L \gamma_{\mu} q_L \right)$$

2

- Options for H(125):
 - SU(2)_L doublet (SM)
 - Scalar singlet
 - Additional light scalars

The Dark Side of the Universe

Dark Energy: ?

- Dark Matter:
 - Gravitational interactions
 - Weakly interacting?
 - Higgs-like interactions?

WIMP miracle: (DM relic density) Right annihilation cross section after freeze-out

Viable DM candidates in many models

Mining for WIMPs

Status @ May 2015

Hidden Portals

Coupling to a hidden Dark Sector through new SM-singlet particles

- Higgs Portal: $\chi H^{\dagger}H$, $\chi^{2}H^{\dagger}H$
- Vector Portal: $V_{\mu\nu}F^{\mu\nu}$
- Neutrino Portal: $\bar{L}_L H N_R$
- Axion Portal: $a \tilde{G}_{\mu\nu} G^{\mu\nu}$, $\partial^{\mu} a \bar{\psi} \gamma_{\mu} \gamma_5 \psi$

DM candidates in many BSMs

Complementary experimental information

Status & Outlook

- The SM appears to be the right theory at the EW scale
- The H(125) behaves as the SM scalar boson
- The CKM mechanism works very well
- Neutrinos do have (tiny) masses. Lepton flavour is violated
- Different flavour structure for quarks & leptons
- New physics needed to explain many pending questions: Flavour, CP, baryogenesis, dark matter, cosmology...

Status & Outlook

- The SM appears to be the right theory at the EW scale
- The H(125) behaves as the SM scalar boson
- The CKM mechanism works very well
- Neutrinos do have (tiny) masses. Lepton flavour is violated
- Different flavour structure for quarks & leptons
- New physics needed to explain many pending questions: Flavour, CP, baryogenesis, dark matter, cosmology...

- How far is the Scale of New-Physics Λ_{NP} ?
- Which symmetry keeps M_H away from Λ_{NP}? Supersymmetry, scale/conformal symmetry...
- Which kind of New Physics?

Awaiting great discoveries @ LHC

This, no doubt, Sancho, will be a most mighty and perilous adventure, in which it will be needful for me to put forth all my valour and resolution

Let your worship be calm, senor. Maybe it's all enchantment, like the phantoms last night

Backup Slides

13th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, 24-30 May 2015

Higgs Mechanism:

Gauge invariance

Massless W^{\pm} , Z (spin 1)

 3×2 polarizations = 6

Effective Couplings $\kappa_i \equiv g_i/g_i^{SM}$

$$\sigma(i \to H) \cdot \text{Br}(H \to f) = \sigma(i \to H) \cdot \Gamma(H \to f) / \Gamma_H \sim (\kappa_i \kappa_f / \kappa_H)^2$$

QCD Exotics

(or fine-tuned cancelations with scalar loops)

V. Ilisie - AP. 1202.3430

Constraints from Higgs Decay

Djouadi, 1311.0720

$$\begin{split} \mathbf{c}_{t} &\approx \frac{\cos\alpha}{\sin\beta} \left[1 + \frac{m_{t}^{2}}{4m_{\tilde{t}_{1}}^{2}m_{\tilde{t}_{2}}^{2}} \left(m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2} - X_{t}^{2}\right) \right] \\ \mathbf{c}_{b} &\approx -\frac{\sin\alpha}{\cos\beta} \left[1 - \frac{\Delta_{b}}{1 + \Delta_{b}} \left(1 + \cot\alpha\cot\beta\right) \right] \\ \mathbf{c}_{V} &= \sin\left(\beta - \alpha\right) \quad , \qquad \Delta_{b} &\approx \frac{2\alpha_{s}}{3\pi} \frac{\mu \, m_{\tilde{g}} \tan\beta}{\max\left(m_{\tilde{g}}^{2}, m_{\tilde{b}_{1}}^{2}, m_{\tilde{b}_{2}}^{2}\right)} \end{split}$$

Heavy Higgs Searches

$t \overline{t}$ Production Asymmetries

Bernardi

Rodrigo, 1207.0331

SM predictions

Data is now consistent with the SM (still 1.7 excess at CDF)

Models predicting larger asymmetries don't pass other phenomenological tests or are rather ad-hoc

13 CHEP

Tevatron:
$$A_{FB} \equiv A_{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

LHC: $A_c = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$
 $\Delta y = y_t - y_\tau$, $\Delta |y| = |y_t| - |y_\tau|$

