A high resolution Timing Counter for the MEG II experiment

M. De Gerone on behalf of the MEG II Collaboration

Frontier Detectors for Frontier Physics 13th Pisa Meeting on Advanced Detectors

24-30 May 2015 • La Biodola, Isola d'Elba (Italy)

Summary

- The MEG and MEG II experiments in a nutshell
- The new Timing Counter R&D
 - Basic principles: pixelated structure and multiple hits timing
 - Pixel studies and optimization
 - Detector design
- Beam test results

The MEG experiment in a nutshell

- Looks for cLFV $\mu^+ \rightarrow e^+ + \gamma$ decay
- Tiny signal in huge background $(BR(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13})$
- Needs extremely high reso on signal kinematic variables:
 - Energies & Direction (LXe, Drift Chambers)
 - Time (Timing Counter, LXe)

M. De Gerone, A high resolution Timing counter for...

- Δt_{ev}=0
- ΔΩ_{eγ}=180°

Phys. Rev. Lett. 110 (2013) 201801 Eur. Phys. J. C 73 (2013) 2365

The MEG upgrade: MEG II

- Usage of existing infrastructure:
 - cryostat, magnet, beam line, CW accelerator for calibrations
- Full redesign of Drift Chamber system
- Modification in LXe inner face readout devices (PMT ⇒ SiPM)
- New Timing Counter design
- A new TDAQ system
- First engineering run this year!

M. De Gerone, A high resolution Timing counter for...

A lot of contribution this week! (IDs: 1, 10, 136, 142, 143, 144, 172, 174, 178, 208, 343, 383, 393, 403)

The Pixelated Timing Counter: basic ideas

 Arrays of 15 scintillating bars readout by PMTs

•Time reso: ~65/70ps, possible improvements:

- **PMTs not optimal** (B field and He environment)
- Large scintillators (40x40x800 mm³) imply low granularity, uncertainty in z impact point, large multiple scattering and spread of optical photons paths

The Pixelated Timing Counter: basic ideas

 Arrays of 15 scintillating bars readout by PMTs

•Time reso: ~65/70ps, possible improvements:

- **PMTs not optimal** (B field and He environment)
- Large scintillators (40x40x800 mm³) imply low granularity, uncertainty in z impact point, large multiple scattering and spread of optical photons paths

M. De Gerone, A high resolution Timing counter for...

Goals:

- reach the same time resolution with smaller modules
- use more than 1 hit for timing evaluation (reso scales as $1/\sqrt{N_{hit}}$)

$$\sigma^{2} = \frac{\sigma_{\text{single}}^{2}}{N_{\text{hit}}} + \frac{\sigma_{\text{inter pixel}}^{2}}{N_{\text{hit}}} + \sigma_{\text{MS}}^{2} \left(N_{\text{hit}} \right)$$

Resolution vs. Number of Hits (expected rate)

The Pixelated Timing Counter: basic ideas

- Arrays of 15 scintillating bars readout by PMTs
- •Time reso: ~65/70ps, possible improvements:
 - **PMTs not optimal** (B field and He environment)
 - Large scintillators (40x40x800 mm³) imply low granularity, uncertainty in z impact point, large multiple scattering and spread of optical photons paths

- **Higher granularity**: hundreds (2 x 256) of **small scintillator plates** (120x50x5 mm³) read-out by **SiPMs**.
- Good single pixel resolution improved with multiple hits
- Thinner (5mm) scintillators for less multiple scattering
- Less pile-up also with higher beam intensity

A 3 years long R&D...

Single pixel R&D

Multipixel prototypes and test for final design

Single pixel R&D

A lot of items to be tested and compared...here, (some of) the main ones:

- SiPMs comparison (noise, PDE, temperature dependence, resolution);
- **SiPMs connection**: series vs parallel;
- scintillator and counter geometry (pixel sizes, number of SiPMs);
- implementation in final detector.

Manufacturer HPK	Model number	Type ^{a)}					
	S10362-33-050C	Conventional (Old) MPPC	Ceramic package				
	S10931-050P		Surface mount type (SMT) package				
	S12572-050C(X) ^{b)}	New (standard-type) MPPC	Metal quench resistor				
	S12572-025C(X)b)		25 μm pixel				
	S12652-050C(X) ^{b)}	Trench-type MPPC	Metal quench resistor				
	3X3MM50UMLCT-Bb)		Improved fill factor				
AdvanSiD	ASD-NUV3S-P-50 ^{b)}	NUV type	SMT package				
KETEK	PM3350 prototype-Ab)	Trench type	-				
SensL	MicroFB-30050-SMT	B-series	With fast output. SMT package				

^{a)}Sensor size of all the samples is $3 \times 3 \text{ mm}^3$. Pixel pitch is 50 µm unless specified. ^{b)}Not version of commercial product. Under development.

All tests led as a function of OV in thermal chamber with controlled temperature (std: 23°C)

M. De Gerone, A high resolution Timing counter for...

Single pixel R&D: SiPM comparison

Dark count rate: evaluated with random trigger in a fixed time window. New Hamamatsu and trench type models show best result

Crosstalk probability: strongly suppressed by trench type model & Advansid devices.

Trans.Nucl.Sci. 61 (2014) 5

Single pixel R&D: SiPM comparison

Standard setup for timing measurement:

- 60 x 30 x 5 mm³ scintillator equipped with 4 SiPMs arrays (series).
- Reference counter (RC) for trigger and T_{ref}.
- ⁹⁰Sr source (E<2.28 MeV).
- Read out: amplifier (G~20, BW~600MHz) + DRS evaluation board v4, dynamic range (-0.1, 0.9)V.

Time resolution is evaluated as the width of: $\Delta t = t_{ref} - \frac{t_1 + t_2}{2}$

RC reso (28ps) is calculated in dedicated runs and subtracted from overall resolution. We checked also the **stability of** Δt as a function of overvoltage and **temperature**

Single pixel R&D: SiPM comparison

Best time reso with Hamamatsu device...but almost all devices

work better than previous TC bar.

Advansid and trench devices are more stable as a function of over voltage and temperature.

HPK old	HPK new	HPK new 25um	HPK trench	Ketek	Advansid	SensL	Temperature stability is a crucial parameter for our
2.5	5.5	2.8	0.1	0.1	0.2	0.8	detector: $\Delta T \rightarrow \Delta V_{BD} \rightarrow \Delta V_{OV}$
	Те	mperatu					

Series vs parallel

Series connection:

- OV adjustment between SiPMs with different V_{BD}
- reduced capacitance \rightarrow narrower pulse
- better time resolution
- higher bias voltage

Parallel connection:

- lower bias voltage
- OV not adjusted
- increased capacitance → wider pulse
- poor time resolution

3-SiPM Parallel

Series vs parallel

Single pixel R&D: scintillator

Measurements with 4 SiPMs array in series connection (HAMAMATSU S10362-33-050C).

Properties	BC418	BC420	BC422	BC422Q
LY(%Anthracene)	67 64		55	19
Rise time (ns)	0.5	0.5	0.35	0.11
Decay time (ns)	1.4	1.5	1.6	0.7
Wavelenght (peak, nm)	391	391	370	370
Attenuation length (cm)	100	110		8
Resolution (ps)	48±2	51±2	43±2	66±3

measured with 60 x 30 x 5 mm³ pixels

All the configurations showed a **resolution better than 70ps** (same as old TC reso). The final choice is done taking into account many factors:

- intrinsic single pixel resolution
- expected number of hits
- efficiency
- number of channel
- costs

Numbers to be evaluated on Monte Carlo simulation...

(few) MonteCarlo results

120mm length pixel

is the best compromise between hit multiplicity, time resolution and number of channels.

different pixel height (40 or 50 mm) increases efficiency

Final pixel design

- Double side read-out with 6 SiPMs (ASD-NUV3S-P) array mounted in series connection on a PCB:
 - increase sensor coverage;
 - small material budget along positron trajectories: PCBs act also as frame.
- 120 x 50 (40) x 5 mm³ fast plastic scintillator (BC422) coupled with optical cement, wrapped with reflector (3M mirror).
- Impact time and position reconstructed with sum / difference of single array time.
- MCX connector for backplane plugging (no cables on TC).

Proving multi hit @BTF

Resolution improves combining more hits: $\sigma^2 = \frac{\sigma_{\text{single}}^2}{N_{\text{hit}}} + \frac{\sigma_{\text{inter pixel}}^2}{N_{\text{hit}}} + \sigma_{\text{MS}}^2 (N_{\text{hit}})$

Tested under beam @BTF (Frascati, IT) in 2013 and 2014 with different setups.

Beam tests @BTF: results

Differences due to:

- Longer pixel (120mm vs 90mm)
- Different SiPM model

Beam test @Paul Scherrer Institute

- e⁺ from Michel decay
- hit rate as expected in MEG II

M. De Gerone, A high resolution Timing counter for...

 μ -beam (π e5@PSI), ~10⁸Hz DC beam

- •8 counters mounted on backplanes
 - 6 120x40x5mm³ + 2 120x50x5mm³
- final pixel layout
- 2 RC counters (trigger/selection)
- BGO calorimeter (beam monitoring)

Beam test @PSI: results

Resolution does not depend from beam rate in the range ~20-300 kHz.

~35ps resolution was found at the expected MEG II rate (~150 kHz).

Final detector layout

- 256 pixels connected to backplanes
- **different heights** in different TC regions.
- optimized layout (fit mechanical constraints from magnet and DCH).
- expected reso ~30/35ps

Conclusion and next steps...

- We upgraded the MEG Timing Counter experiment, developing a new detector based on hundreds of scintillator tiles with SiPMs readout.
- An improvement in time reso is expected thanks to good single pixel resolution and multiple hits events.
- A 3 years long R&D led to a 120x50(40)x5 mm³ pixel, equipped with 6-SiPMs arrays in series connection.
- Prototype were tested under beam, proving a time resolution of ~30-35ps @8hits (x2 better than previous TC)
- The final detector is currently under construction.
- Next step: MEG engineering run 2015.

Back up

SiPM comparison: PDE, rise time

PDE: light from a LED $(\lambda \sim 400 \text{ nm})$. Relative PDE is calculated from P(N=0) with a correction for accidental coincidences of dark counts.

Rise Time: 10-90% time from waveform analysis

Series vs parallel

Series connection:

- OV adjustment between SiPMs with different V_{BD}
- reduced capacitance → narrower pulse
- better time resolution
- higher bias voltage

Parallel connection:

- lower bias voltage
- OV not adjusted
- increased capacitance → wider pulse
- poor time resolution

Position dependence

Probing the multi hit scheme

Time resolution improves combining time measured by many pixels:

$$\sigma^{2} = \frac{\sigma_{\text{single}}^{2}}{N_{\text{hit}}} + \frac{\sigma_{\text{inter pixel}}^{2}}{N_{\text{hit}}} + \sigma_{\text{MS}}^{2} \left(N_{\text{hit}} \right)$$

Tested under beam with prototypes at BTF (Frascati, IT), PSI (Villigen, CH)

BTF (2013, 2014):

- •50MeV positron,
- •very low rate (~50Hz),
- provisional pixel setup
 PSI:
 - MEG II environment,
 - positrons from µ decay,
 - high beam rate (MEG II expected: ~100kHz/pixel)

Confirm multiple hit scheme Test of backplane

Final pixel layout High rate environment

Proving multi hit @BTF

Resolution improves combining more hits: $\sigma^2 = \frac{\sigma_{\text{single}}^2}{N_{\text{hit}}} + \frac{\sigma_{\text{inter pixel}}^2}{N_{\text{hit}}} + \sigma_{\text{MS}}^2 (N_{\text{hit}})$

Tested under beam @BTF (Frascati, IT) in 2013 and 2014 with different setups.

- 4 SiPMs series + PCB
- 90 x 50 x 5mm³ pixels
- cables, no backplanes
- check multi-hit

- 6 SiPMs series + PCB
- 120 x 50 x 5mm³ pixels
- backplanes

Calibration

We are developing 2 independent ways for pixel inter-calibration based on **Michel data** and **laser calibration**.

Michel

Developed on MC:

- Analysis with clustering and tracking;
- TOF between counters calculated from tracking
- Time offset is calculated by minimizing χ^2 ;
- Tested adding a random time offset (5ns RMS)

M. De Gerone, A high resolution Timing counter for...

Laser

Sending a synchronous light pulse to all the pixels.

- Hamamatsu ps laser (MODEL??)
- A chain of optical splitters is used to divide the light signal then
- light is injected in the pixel by means of an optical fiber coupled to the scintillator
- independent from other detector

Backplanes

Pixels are connected to the BPs by means of MCX connectors and fixed to the main structure through the thermal connection.

BPs usage (940x25x5.5mm³) avoid large number of cables on TC (>500).

In the inner region there is not enough room: pixels are mechanically connected to the structure using thermal blocks, while a coaxial cable connect them to the BP.

We need 4 different BP layout (for pixel

Successfully tested at BTF and PSI in 2013 and 2014.

New Timing Counter overview

Pixels have different sizes and frame in different detector region

All configurations have been built and tested

TC structure: pixel mounting

The pictures show an example of pixel mounting

MCX connector

Copper block for thermalization and mechanical support