Frontier Detectors for Frontier Physics 13th Pisa Meeting on Advanced Detectors 24–30 May 2015 • La Biodola, Isola d'Elba (Italy)

FLARES: a flexible scintillation light apparatus for rare event searches

Monica Sisti Università and INFN – Milano Bicocca

on behalf of the FLARES collaboration

Neutrinoless double beta decay

ββ-0ν: (A, Z) → $(A, Z+2) + 2e^{-1}$ ■ not allowed in Standard Model ($\Delta L=2$) ■ expected $\tau_{1/2} > 10^{25}$ years

ββ-**0**ν ⇔

- The decay occurs only if neutrinos are Majorana particles
- ✓ The decay rate depends on the "effective Majorana mass"

light Majorana ν mediated $\beta\beta$ - 0ν decay rate:

Next generation experiments will give informations on:

- neutrino mass scale
- neutrino mass hierarchy

nuclear factor of merit (contains nuclear physics details)

ββ0v experimental sensitivity

For bkg = 0:

$$S^{0\nu}(\tau_{1/2}) \propto \frac{\epsilon i.a.}{A} M t_{meas}$$

Main properties of most common techniques for neutrinoless double beta decay searches, taking into account also actual feasibility and cost:

Experimental approach	FWHM <2% in the ROI	Mass scalability	ββ0ν isotope flexibility	Background reduction
Ge diodes	1			γ vs. α/β (event topology by PSD)
Bolometers	1		√	β/γ vs. α (PSD and/or light/heat)
Organic scintillators		1	1	
Liquid noble gas TPC		1		β/γ vs. α (light/charge), γ vs. β (topology)
Noble gas TPC	1			$β\beta$ vs. $\alpha/\beta/\gamma$ (event topology)
Inorganic scintillators	1	1	1	β /γ vs. α (PSD), γ vs. α/β (topology)

ββ2v: the ultimate background

The continuous background of the two neutrino double beta decay is unavoidable								
						Energy [MeV]		
Isotope	$Q_{\beta\beta}$ [keV]	η [%]	$T_{1/2}^{2\nu}$ [y]	$R_{2\nu}(50 \mathrm{keV})$ [c/y/ton_iso]	$R_{0\nu}(m_{\beta\beta} = 50 \mathrm{meV})$ [c/y/ton_iso]	$R_{0\nu}(m_{\beta\beta} = 10 \mathrm{meV}$ [c/y/ton_iso]		
⁴⁸ Ca	4274	0.2	4.4×10^{19}	4.0×10^{-2}	1.4-23.1	0.1–0.9		
⁷⁶ Ge	2039	7.6	1.8×10^{21}	2.5×10^{-2}	1.2-12.2	0.05-0.5		
⁸² Se	2996	8.7	9.2×10^{19}	6.8×10^{-2}	4.4–38.7	0.2–1.5		
⁹⁶ Zr	3348	2.8	2.3×10^{19}	1.3×10^{-1}	3.9–50.7	0.2–2.0		
¹⁰⁰ Mo	3034	9.6	7.1×10^{18}	6.8×10^{-1}	8.9-71.3	0.4–2.9		
¹¹⁶ Cd	2814	7.5	2.8×10^{19}	2.1×10^{-1}	6.8–23.8	0.3-1.0		
¹³⁰ Te	2528	34.2	6.8×10^{20}	1.3×10^{-2}	3.6-24.9	0.1-1.0		
¹³⁶ Xe	2458	8.9	2.1×10^{21}	4.8×10^{-3}	2.5-14.0	0.1-0.6		
¹⁵⁰ Nd	3368	5.6	8.2×10^{18}	2.3×10^{-1}	9.1-42.7	0.4–1.7		

High energy resolution detectors are mandatory!

A possible solution: scintillation

Inorganic scintillating crystals:

- can be grown with high intrinsic radiopurity
- \checkmark offer flexibility in the choice of the $\beta\beta0\nu$ candidate
- \checkmark show quenching factors for α particles as small as 0.2
- \checkmark have intrinsic α/β pulse shape discrimination ability

ββ0v candidate	Q [keV]	i.a. [%]	Isotope	$T_{1/2}^{0\nu}(10 \mathrm{meV})$	Available
⁴⁸ Ca→ ⁴⁸ Ti	4274 🔪	0.2			semimating erystars
¹³⁶ Xe→ ¹³⁶ Ba	2458	8.9	⁴⁸ Ca	7-100	CaF_2 , $CaWO_4$, $CaMoO_4$
¹³⁰ Te→ ¹³⁰ Xe	2528	34.2	$100 M_{\odot}$	1 0	$C_0M_0O_1$, $Z_nM_0O_1$
¹²⁴ Sn→ ¹²⁴ Te	2228	5.64	116 ~ 1	1-9	
¹¹⁶ Cd→ ¹¹⁶ Sn	2814 🔻	7.5	¹¹⁰ Cd	3–10	$CdWO_4$, $CdMoO_4$
¹¹⁰ Pd→ ¹¹⁰ Cd	2013	11.8			
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3034	9.6			
⁹⁶ Zr→ ⁹⁶ Mo	3348 🔫	2.8			··-··-:
⁸² Se→ ⁸² Kr	2996	8.7	· - · · - · · ·	Transition energy at	oove most intense
⁷⁶ Ge→ ⁷⁶ Se	2039	7.6		γ lines from natur	al radioactivity
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3367 <	5.6			

Inorganic scintillating crystals

Temperature, K

Property	CaMoO ₄		$CdWO_4$		$CaF_2(Eu)$	
	300 K	120 K	300 K	120 K	300 K	200 K
Atomic mass [g/mol]	200		360		78	
Density $\left[g/cm^{3} \right]$	~4.3		7.9		3.2	
Melting point [°C]	$\sim \! 1445$		1271		1418	
Lattice structure	Scheelite		Wolframite		Fluorite	
Energy gap E_g [eV]	4.0		4.2			
Emission maximum λ_{max} [nm]	520	$\sim \! 530$	480	480	435	
Light yield [ph/MeV]	$\sim \! 8900$	$\sim \! 25000$	$\sim \! 18500$	~33500	24000	$\sim \! 26400$
Scintillation decay time [µs]	$\sim \! 18$	$\sim \! 190$	13	~ 22	0.9	
Refractive index	1.98		2.2–2.3		1.44	
Absorption length [cm]	~ 60		~ 60			

Potential energy resolution with scintillators

Assuming a light yield of 10000 ph/MeV @ 120 K (a reasonable value for many scintillators):

$$R_{stat} = \frac{2.355}{\sqrt{3.10000}} = 1.36\% \equiv 41 \, keV (FWHM) \qquad \textcircled{0}{\text{@ 3 MeV}} \qquad (Q \text{ value of many} \\ \beta\beta0\text{v candidates})$$

The key point: avoid resolution degradation when the crystal is coupled to a proper photodetector

Silicon Drift Detectors (SDDs) as photodetectors

Monica Sisti — 13th Pisa Meeting, Isola d'Elba, 29 May 2015

$$\text{ENC} = \left[\frac{k_1 \cdot \langle e_w^2 \rangle \cdot (C_d + C_i + C_p)^2}{\tau} + k_3 A_{1/f} (C_d + C_i + C_p)^2 + 2k_2 q I_l \tau\right]^{1/2}$$

 $C_{d} = 0.5 \text{ pF (1 cm^{2} \text{ SDD})}$ $C_{i} = 1.0 \text{ pF (FET)}$ $C_{p} = 0.5 \text{ pF (parasitic)}$ $< e_{w}^{2} > = 10^{-18} \text{ V}^{2}/\text{Hz (FET @ 120K)}$ $A_{1/f} = 0 \text{ (negletable for JFET)}$ $I_{i} = 10^{-14} \text{ A (SDD and JFET @ 120K)}$

ENC_e = 3.1 e⁻ r.m.s.

for 1 cm² SDD operated at 120 K

Hypothesis: one cylindrical crystal of 5 cm diameter and 5 cm height: the two circular surfaces are covered with ~20 SDD cells of ~1 cm² of area each

Expected energy resolution: CaMoO₄ case

$$R(\text{FWHM}) = \sqrt{R_{\text{int}}^2 + R_{\text{stat}}^2 + R_{\text{noise}}^2} \simeq 2.355 \sqrt{\frac{1}{\alpha_{ph}N_{ph}\epsilon_Q}} + \frac{N_{\text{SDD}}\text{ENC}_e^2}{\alpha_{ph}^2N_{ph}^2\epsilon_Q^2}} = 1.15\%$$

 $N_{ph} = 75000$ (for 3 MeV for CaMoO₄ @ 120K) $\alpha_{ph} = 70\%$ (collection efficiency from MC simulation) $\varepsilon_Q = 80\%$ (SDD quantum efficiency) $N_{SDD} = 40$ (number of 1 cm² SDDs for a Ø 5 cm crystal) $ENC_P = 3.1 e^{-1} r.m.s.$ (noise of a single 1 cm² SDD)

@ 3 MeV: ∆E (FWHM) = 37 keV

for one CaMoO₄ crystal coupled to an array of 40 SDDs (1 cm² each) operated at 120 K

With this detector concept it would be possible to build large mass compact structures of high performing detectors

FLARES project

Approved and funded by INFN-CSN5 to prove the detector principle Start of research activity: January 2015

Collaboration between: INFN-Milano Bicocca, INFN-Bologna, INFN-Trieste Synergy with REDSOX experiment for SDD development

Eur. Phys. J. C (2014) 74:3151 DOI 10.1140/epjc/s10052-014-3151-5 The European Physical Journal C

Regular Article - Experimental Physics

A flexible scintillation light apparatus for rare event searches

V. Bonvicini¹, S. Capelli^{2,3}, O. Cremonesi³, G. Cucciati², L. Gironi^{2,3}, M. Pavan^{2,3}, E. Previtali³, M. Sisti^{2,3,a}

¹ INFN-Sezione di Trieste, 34149 Trieste, Italy

² Dipartimento di Fisica, Università di Milano-Bicocca, 20126 Milan, Italy

³ INFN-Sezione di Milano-Bicocca, 20126 Milan, Italy

Received: 24 July 2014 / Accepted: 22 October 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Scintillating crystals for single detector module

- We are currently working on:
- Selection of a producer of high quality crystals: CaMoO₄ (CdWO₄)
- Study of radioactive background within the chosen crystals
- Low temperature measurements to optimize light collection efficiency

All the above points are closely interconnected...

SDD geometries

We are testing the performance of some SDDs produced at FBK in Trento - in collaboration with INFN-Ts - for the ReDSoX project (→ not optimized for FLARES)

Monica Sisti — 13th Pisa Meeting, Isola d'Elba, 29 May 2015

Measured SDD Quantum Efficiency

A new SDD run with thin entrance window has been produced for ReDSox: should show improved quantum efficiency at the λ s of interest for FLARES. Next run: anti-reflecting coating will be added.

First tests: square SDD

First tests: square SDD

First tests: hexagonal SDD

⁵⁵Fe source directly facing a single SDD cell

First scintillation light readout

 137 Cs @ IAPS labs (T= 253K; sh = 6 µs)

By scaling this result at 3 MeV energy, the 1% goal seems achievable!

SDD +

CsI(Tl) scintillator

¹³⁷Cs measurement of a

single SDD cell of the

exagonal array optically

coupled to a very small

CsI(Tl) cylindrical

scintillator

Conclusions and perspectives

- The FLARES detector concept offers in a single device all the demanding features of an ideal ββ0v experiment: energy resolution, low cost mass scalability, isotope choice flexibility, background suppression means.
- The same detector concept may be applied to other physics measurements as well: Dark Matter searches, neutrino-nucleus interactions, ...
- The project has just started: preliminary results are very encouraging!

FLARES collaboration:

S. Capelli, L. Gironi, E. Previtali, M. Sisti (Università & INFN Milano-Bicocca) C. Labanti, R. Campana, M. Marisaldi (INAF/IASF & INFN Bologna) F. Fuschino, G. Baldazzi, L. Riganese, M. Zuffa (Università & INFN Bologna) Y. Evangelista, M. Feroci (INAF/IASF & INFN Roma 2) V. Bonvicini, A. Rashevsky, A. Vacchi, G. Zampa, N. Zampa (INFN Trieste)

BACK UP SLIDES

Time response and energy resolution

V.B. Mikhailik et al., NIM A 583 (2007) 350

(not a problem for a rare event search)

Monica Sisti — 13th Pisa Meeting, Isola d'Elba, 29 May 2015