

G.-F. Dalla Betta

The INFN-FBK "Phase-2" R&D Program

Gian-Franco Dalla Betta University of Trento and TIFPA INFN, Trento, Italy gianfranco.dallabetta@unitn.it

On behalf of the INFN-FBK Phase-2 Collaboration

Frontier Detectors for Frontier Physics 13th Pisa Meeting on Advanced Detectors 24–30 May 2015 • La Biodola, Isola d'Elba (Italy)

- Introduction
- R&D program
- Status
 - Planar sensors
 - Technology tests for new 3D sensors
 - 3D design and simulations
- Conclusions

- higher hit-rate capability
- increased granularity
- higher radiation tolerance
- lighter detectors

Next ROC generation (RD53 65 nm)

50x50 μ m² and 25x100 μ m² pixels $C_{DET} \le 100 \text{ fF}$ $I_{leak} \le 10 \text{ nA/pixel}$ (no amp. comp.) Threshold: ~1000 electrons

ATLAS Pixel FE chips FE-I4 FE-?? FE-I3 hit rate 1GHz/cm² 3.5mW/mm² rad hard: 2x10¹⁶/cm² ~2 × 2 cm² 1 Grad ~0.6 × 1.1 cm² 250 nm technology 130 nm technology 65 nm technology pixel size $400 \times 50 \ \mu m^2$ pixel size 250 × 50 µm² pixel size 125 × 25 µm² 3.5 M. transistors 70 M transistors ~ 500 M transistors

HL-LHC ATLAS and CMS Pixel TDR: 2017

ATLAS IBL pixels

- Planar n-on-n (200 µm thick)

S. Altenheiner et. al. JINST 7 (2012) C02051

- Double-sided 3D (230 μ m thick)

Other emerging technologies

- Planar n-on-p
- Slim and active edges

Scribe Cleave Passivate

V. Fadeyev et al., NIMA 731 (2013) 260

M. Bomben et al., NIMA 730 (2013) 215

The INFN-FBK "Phase-2" R&D program

 Initially proposed in 2013 as INFN CSN5 Call project "ACTIVE" (<u>ATLAS and CMS Towards InnovatiVe pixEls</u>), but not approved

5

 Funded from 2014 by INFN CSN1 "RD_FASE2" and INFN-FBK-PAT "MEMS3" agreement

12 INFN GROUPS INVOLVED, ~20 FTE

G.-F. Dalla Betta

ATLAS (BO, CS, GE, MI, TN, UD), CMS (BA, FI, MIB, PG, PI, TO)

GOAL: development of new thin 3D and Planar Active Edge (PAE) pixel sensors on 6" p-type wafers at FBK:

- Technology and design to be optimized and qualified for extreme radiation hardness (2x10¹⁶ n_{eq} cm⁻²)
- Pixel layouts compatible with present (for testing) and future (RD53 65nm) FE chips of ATLAS and CMS

Strong sinergy with WP7 of AIDA2020

May 28, 2015

sparking

point

Main R&D issues

SENSORS (with FBK)

- Processing thin sensors (~100 μm active layer)
- High densities of small pixels

G.-F. Dalla Betta

- Radiation hardness (up to 2x10¹⁶ n_{eq} cm⁻²)
- Active or very slim edges (~100 μ m)

BUMP BONDING (with Selex and IZM)

- High densities of bumps (~130000) on large areas (~4cm²)
- Back-end processing:
 - ROC and sensor thinning
 - Metallization
 - Surface insulation for spark protection (BCB, 5300 V/μm)

Focus of the talk

L High Voltage

Thin sensors on support wafer: SiSi or SOI → Substrate qualification

Process

Tests

- Ohmic columns/trenches depth > active layer depth (for bias)
- Junction columns depth < active layer depth (for high V_{bd})
- Reduction of hole diameters to ~5 um
- Holes (at least partially) filled with poly-Si

Test structures for SiSi DWB substrate qualification

Batch completed at FBK in Dec. 2014

→Different material quality ?

Guard Ring reverse currents on 3 wafers with 3 p-spray doses: Low Medium High (correct V_{bd} trend)

May 28, 2015

Test diode: C-V measurements

Measured at FBK

10

Depletion voltages:

• $V_{depl} \sim 16V$ for 100 μ m thick.

G.-F. Dalla Betta

• $V_{depl} \sim 20V$ for 130 μ m thick. do not scale with square of thickness

\rightarrow Different resistivities ...

Concentration profiles

- Doping 1 3 x 10¹² cm⁻³
- Thicknesses about 10 μm lower than the nominal values, compatible with Boron diffusion from support wafer and measurement limit (L_{debye})

di Trento

Pixel sensors I-V measurements (1)

Measured at INFN Firenze up to high voltage

di Trento

Pixel sensors I-V measurements (2)

PLOT

Measured at INFN Firenze up to high voltage

W30-PD1 🖊 W30-PD2 🖊 W30-PD3 🔨 W30-PD4 🖊 W30-PD5 🖊 W30-PD6 🖊 W30-PDA1 / W30-PDA2 🖊 W30-PDB1 🖊 W30-PDB2 🖊 W30-PDC1 / W30-PDC2 W30-PDD1 / W30-PDD2 / W30-PDp1 🖊 W30-PDp2 / W30-PDp3 🖊 W30-PDp4 🖊 W30-PDp5 🖊 W30-PDp6 🖊

Junction columns optimized for uniformity

First holes partially filled with poly-Si

Initial breakdown voltage high enough

3-trap level "Perugia" model, parameters from D. Pennicard, NIMA 592 (2008) 16
[Underestimates SE at large fuence, improved model required → Poster by D.Passeri]

- 1 μ m thick (~2d) slice, with MIP vertical hits at several different points
- 20-ns integration of current signals, average, and normalization to injected charge
- Higher Signal Efficiency at lower V_{bias} in 25x100 (2E), as expected due to smaller L

G.-F. Dalla Betta

Slim edges

17

- Slim edge concept based on multiple ohmic columns termination developed for IBL (~200 $\mu m)$ $\,$ M. Povoli et al., JINST 7 (2012) C01015 $\,$
- It can be made slimmer by reduced inter-electrode spacing (safely 75 100 μm , more aggressively down to ~50 μm)
- 3D guard rings also possible with similar dead area

Conclusions

- A 3-years R&D program funded by INFN CSN1 is under way to push 3D and PAE pixel technology towards HL-LHC requirements
- An ATLAS-CMS-FBK synergy can give a unique opportunity for technical leadership in the most demanding inner-most tracking layers of HL-LHC detectors
- Initial results from technological tests are encouraging
- Now ready to start a batch of new 3D sensors
- Design/layout of PAE batch is under way

Università degli Studi

Back-Up Slides

G.F. Dalla Betta et al, NIMA 765 (2014) 155

May 28, 2015

- Strip sensors from IBL prod. with ALIBAVA read-out ٠
- Proton irradiation at KIT up to $2x10^{16} n_{eq}/cm^2$ ٠
- Beta and laser tests performed in Freiburg ٠
- Very good CCE, but clear saturation of the signal only for $2x10^{15}$ n_{eq}/cm²
- For $2x10^{16} n_{eq}/cm^2$ the bias voltage is not high enough to ensure uniform response.
- Simulated electric field fails to describe the double junction effect

Simulated electric field

23

Measured Laser signal

 $5x10^{15} n_{eq}/cm^2$

G.-F. Dalla Betta

Active edge: design issues

• Trade-off between dead area at the edge and breakdown voltage

30

- Previous experience (FBK-LPNHE): V_{bd} ~ 400 500 V for edge size of 100 – 200 μm after neutron irradiation at 2.5x10¹⁵ n_{eq} cm⁻² (not annealed, tested at 0±1°C), it can be better with more ionizing dose
- Optimized guard ring designs and p-spray dose implant
 to be implemented

Improved radiation damage model

See Poster by D. Passeri et al. "Modeling of Radiation Damage Effects in Silicon Detectors at High Fluences HL LHC with Sentaurus TCAD"

31

- ✓ Goal: extend the predictive capabilities of a past radiation damage modeling to HL-LHC radiation damage levels (e.g. fluences > 2.0×10¹⁶ n_{eq} cm⁻²)
- Bulk radiation damage modelling: extension of the three-level UniPG modelling (capture cross section, charge multiplication, avalanche effects)
- ✓ Interface radiation damage modelling:
 - oxide fixed charge and interface trap state @fluence
 - systematic study of acceptor/donor states at different energies

Test structures from FBK and IMM irradiated with $\gamma\text{-rays}$ up to 500 Mrad being characterized

- ✓ Simulations vs. measurements.
- ✓ Charge collection as a function of radiation fluences at T=248K, V_{BIAS}=900V
- ✓ Data from T. Affolder et al.,

