Small-Strip Thin Gap Chambers for the Muon Spectrometer Upgrade of the ATLAS Experiment

13th Pisa Meeting on Advanced Detectors, La Biodola (Italy) 24-30 May 2015 - Estel Perez Codina (TRIUMF) on behalf of the ATLAS Muon Collaboration

The small-strip Thin Gap Chambers will provide the Muon New Small Wheel with excellent triggering and tracking capabilities. The construction protocol has been validated by test beam experiments on a real-size prototype showing the performance requirements are met.

Introduction

L1 muon trigger rate is high in the forward region: fakes are currently 90% of the trigger rate in the end-cap region Fake rate increases with luminosity: After LS2 LHC's *instantaneous* luminosity will be 2-3 x 10³⁴ cm⁻² s⁻¹ (and up to 5-7 x 10³⁴ cm⁻² s⁻¹ at HL-LHC), one bunch crossing every 25 ns.

Goal of the NSW :

- Reconstruct muon tracks with high precision (Micromegas detectors, MM)
- Provide information for the Level-1 trigger
- (small-strip Thin Gap Chambers, sTGC)
- **Performance requirements:**
- **1 mrad** angular resolution
- **100 µm** position resolution

The New Small Wheel

(a) sTGC (small sector).

Layout

Experimental Setup at the Fermilab Test Beam **Small-Strip Thin Gap Chambers**

Each module is built with **4 gaps** each containing: Strips, wires, pads

Important to measure the angle of the muon trajectory: need high resolution on the strips

← Pad ← Strip ← Strip ← Pad ← Pad I← Strip ← Strip \leftarrow Pad

- Precise (<40 µm) alignment between layers by machining together strips with **precision brass insert**

- Cathode boards flat and parallel to better than 80µm using honeycomb filler

- Avoid mechanical deformations by using the **same** composite material (FR-4) everywhere

Beam: 32 GeV pion beam Rate 1kHz Beam spread: 1 cm²

EUDET Telescope: 3+3 pixel sensors: 2cm (high) x 1cm (width) Pixel size: 18 x 18 µm

Trigger: 2+2 scintillators + PMTs around the first and last pixel sensors

Read-out:

VMM: chip interface connected to the chamber (shaper discriminator) Jack's Cards: configure VMM and do the Analog \rightarrow Digital conversion

Construction Steps

Test Beam Data Analysis and Results

