

Status of the HOLMES detector development

A. Nucciotti on behalf of the HOLMES collaboration

Dip. di Fisica "G. Occhialini", Univ. Milano-Bicocca, Italia INFN - Sezione di Milano Bicocca, Italia ERC-ADG 2013
Pl: Stefano Ragazzi
Host Institution: INFN

HOLMES is a new experiment to **directly measure the neutrino mass** with a sensitivity as low as 0.4 eV. **HOLMES** will perform a **calorimetric measurement of the energy released in the electron capture decay of ¹⁶³Ho (A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429). The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. HOLMES** will deploy a large array of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei.

mid-term prototype 2016

 A_{EC} = 300 Bq f_{pp} = 3x10⁻⁴ ΔE = 1 eV τ = 1 μ s

> full scale HOLMES 2017

A. Nucciotti, Status of the HOLMES detector development

TES detectors R&D

microwave readout and signal multiplexing

• pile-up discrimination algorithms for optimal time resolution

