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RD52 1s a generic detector R&D project
not linked to any experiment

Goals:

- Investigate & eliminate the factors that prevent us from measuring hadrons
and jets with similar precision as electrons, photons

- Build a calorimeter that is better than anything that has ever been built
or conceived before, and up to the challenges of future HEP experiments

- N.B. Our calorimeters are intended to actually measure the energy of the
objects produced in particle collisions, as well as Ep, fp etc.
(unlike the multi-million channel PFFA calorimeters)

Outline:

e Improve what, and how?

e Recent, unpublished results
® Plans for the future



State-of-the-art in hadron calorimetry

< 1985 Performance dominated by fluctuations in em shower content (e/h # 1)

1985 - 1990 Mysteries of compensation solved (e/h = 1)
Need proper calorimeter response to shower neutrons

1990 - 1995 ZEUS and SPACAL built compensating hadron calorimeters
that were very linear, with resolution of 30-35%/\/E for single hadrons

Problems:
1) Detector mass (Pb,U) much larger than for same #\;; of Fe,Cu
2) Small sampling fraction (Pb, 2.4%) limits the em energy resolution

3) Jet performance worse than for single hadrons

> 2004 DREAM/RDS?2 intends to reduce/eliminate these problems



What is the problem with the jet energy resolution?
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What is the problem with the jet energy resolution?
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A copper or iron based calorimeter would be much better in that respect



DUAL-READOUT CALORIMETRY

e Dual-readout Method (DREAM):

Simultaneous measurement of scintillation light (dE/dx) and Cerenkov light
produced in shower development makes it possible to measure the em fraction of
hadron showers event by event.

The effects of fluctuations in this fraction can thus be eliminated

e [n this way, the same advanges are obtained as for intrinsically compensating
calorimeters (e/h = 1), WITHOUT the limitations (sampling fraction, integration
volume, time)

- Correct hadronic energy reconstruction, in an instrument calibrated with electrons

- Linearity + excellent energy resolution for hadrons & jets
- Gaussian response functions



Hadronic performance



Experimental effects of the DREAM procedures (200 GeV “jets”)
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Figure 2: Cerenkov signal distributions for 200 GeV multi-particle events. Shown are the raw data (a), and the
signal distributions obtained after application of the corrections based on the measured em shower content, with (¢)
or without (b) using knowledge about the total “jet” energy [5].



Number of events per bin

Hadronic response functions of the DREAM Cu-fiber calorimeter

(comparison experiment/Monte Carlo)
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Hadronic energy resolution dual-readout Cu-fiber calorimeter

Energy resolution (%)

Energy (GeV) —
20
15— —
L 2 a DREAM
= SPACAL
® FTFP_BERT
v HP_BERT

10

30%/VE

e DREAM

020 015 0.10 0.05

-~ 1/\/E

W/Z separation
(high-precision GEANT4)

400

wW W
o a1
o o

N
4
o

_—y
[&)]
o

Number of events per bin
- no
o o
o o

a
o

II_I_I_|_I_I_I—I—I—| |IIII|III I

=)

o |||||IIII||||I|III||||II|I|||||III||||||III

50 60 70 80 90 100

Calorimeter signal (em GeV)



The RD52 Pb-fiber calorimeter
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The first RD52 Cu-fiber module
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The RDS52 test area in the H8 beam line




Electromagnetic performance

20 GeV positrons in the RD52 Cu-fiber calorimeter

entering the detector at very small angles
i.e. almost parallel to the fibers



The energy resolution for 20 GeV e™ as a function of the angle of incidence
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- em showers are very narrow,
especially early on.
The sampling fraction of this
early shower component
depends on impact point
(in fiber or in between fibers)

- This dependence disappears
when particles enter at an
angle with the fibers

- This effect does NOT play a
role for Cerenkov signals,
since early part of shower
does not contribute to signal
(numerical aperture of fibers)



Ejfect of upstream absorber (1 X,) on the em energy resolution
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Effects of absorber:

It widens the shower and thus

reduces impact point dependence
of the response

Fluctuations in energy loss lead
to a worse energy resolution



Energy resolution o/E (%)

S + C signals provide independent shower sampling
— em energy resolution improves by adding signals
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Other new experimental results



Time structure of calorimeter signals

e Detailed time structure measurement of calorimeter signals

(40 GeV mixed e, t, u beam, signals digitized at 5 Gs/s)
Beam steered into Tower 15 of the lead calorimeter

Study differences that derive from the fact that light travels
at c/n (17 cm/ns) in the fibers, while the particles that

generate the light travel at ~c (30 cm/ns)
(except the neutrons!)

This leads to a depth dependent effect of 2.5 ns/m
on the calorimeter signals



Average calorimeter signals (40 GeV)

Cerenkov signals around the beam axis
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Comparison Cerenkov / Scintillation signals (around shower axis)

Calorimeter signal (a.u.)
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Comparison on-axis / off-axis calorimeter signals

Calorimeter signal (a.u.)
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Signal leakage counters (a.u.)

Comparison signal shapes leakage counters

Expected signal contributions :

- prompt charged shower particles
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Plans for the near future



Time structure of the signals

o Analysis of data has just started.
Results shown here concern averages of few thousand events

o Individual events:
- where was light produced?—scorrect for light attenuation.
- what fraction of signal is due to neutrons?—simprove resolution.
- recognize non-showering particles (u)— particle ID

- multiple peaks in time structure may be caused by pileup —resolve.
can be studied with reflected light from aluminized front face fibers .

o All these issues will benefit from faster light detector, especially
for Cerenkov signals.

New MCP-PMT is much faster than our dynode based PMT¥



Proton / pion differences in calorimeter signals
caused by differences in em shower fraction characteristics
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Summary & Conclusions

o A dual-readout Cu based fiber calorimeter has better performance
characteristics than anything else that has been built or conceived so far

- Excellent signal linearity

- Excellent energy resolution for em and hadronic showers

- No problems with jet energy resolution as in ZEUS (e/mip 0.84 vs 0.61)

- Excellent particle ID possibilities in longitudinally unsegmented detector

- Very fast signals
- Straightforward to calibrate (electrons)

e New results indicate that performance is also good at very small angles

Time structure measurements of signals may further extend possibilities
(pileup, particle ID, ...)

® The DREAM/RDS?2 project is documented in 27 NIM papers (and counting)



Backup slides



DREAM: How to determine f, and E?
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Average Cerenkov signal (GeV)
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