

Bernhard Flierl - LS Schaile

TPC-like analysis for thermal neutron detection using a GEMdetector

13th Pisa Meeting on Advanced Detectors

Triple GEM Detector

* Provided by H. Takahashi (Tokyo University)

• ¹⁰B has high neutron capture cross section (σ = 3835±9 b)

 ${}^{10}B + n_{th} \rightarrow {}^{7}Li + {}^{4}He + Q(2.8 \text{ MeV}) (6\%)$

¹⁰B + $n_{th} \rightarrow {}^{7}Li + {}^{4}He + \gamma + Q(2.3 \text{ MeV}) (94\%)$

- Li and Helium ions are produced back to back in converter cathode
- Photon can escape detector (detection efficiency < 1%)

- Ions produce tracks of 4-8 mm in the drift region (energy and ion dependent)
- Detection of one ion with efficiency close to 100 %

- Ions form straight tracks in the active volume
- Start of track *\u00e4nternaction point in converter foil*
- Standard analysis: Centroid method \rightarrow FWHM \sim 0.8 track length

- Determination of spatial resolution at Reasearch Reactor FRM II Garching (October 2014)
- Collimated beam of 4.7 Å neutrons (13.4 meV)
- Total width of beam spot at cathode 250 μ m
- $2 \mu m^{10} B$ converter cathode with 7% conversion efficiency

Analysis using Last Strip Info

- Strip last hit drastically improves resolution \rightarrow 330 μm *
- Charge is spread over about 2 strips for single electron

 \rightarrow overcompensation of starting point

(cu) z

0.3

Simulation

single e

D. Pfeiffer et al., The µTPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs, JINST 10 (2015) P04004

μTPC -like Full Reconstruction

- Center of charge position (x_c) is well defined for Li and He tracks
- Start position can be extrapolated if inclination angle of track is known
- $x_0 = x_c + sgn(\theta) \epsilon (\Delta x, \theta, dE/dx)$
- ε is dependent of :
 - Track length (projected)
 - dE/dx along the track
 - Inclination angle

n

- Correction factor determined by fits to position distributions to length, angle and dE/dx-skewness
- · Iterative process, values are not independent from eachother

 $\sigma = (100 \pm 15) \mu m / r$

- Spatial resolution in the same order as slit width
- \Rightarrow Convolution of boxcarfunction with Gaussian:

$$f(x) = p_0 \left(erf\left(\frac{a + (x - \mu)}{\sqrt{2}\sigma}\right) + erf\left(\frac{a - (x - \mu)}{\sqrt{2}\sigma}\right) \right)$$

800

600

400

200

0 -

185.5

186

- p₀ :pre-factor
- a: half width of slit
- µ: center of slit
- σ : standard deviation¹⁰⁰⁰

186.5

Mean

RMS

p0

p1

p2

187

 χ^2 / ndf

- µTPC-principle improves the tracking of the charged products of the ¹⁰B+n reaction considerably
- The spatial resolution of a GEM-detector for thermal neutrons could be increased from 1.4 mm to 0.1 mm (σ) by self consistent calibration
- The detection efficiency is only slightly influenced by this method, nearly all tracked ions are used in the analysis (80%+)

- µTPC-principle improves the tracking of the charged products of the ¹⁰B+n reaction considerably
- The spatial resolution of a GEM-detector for thermal neutrons could be increased from 1.4 mm to 0.1 mm (σ) by self consistent calibration
- The detection efficiency is only slightly influenced by this method, nearly all tracked ions are used in the analysis (80%+)

Thank you!

centroids for different parameters Interaction point

27.05.2015