The superconducting microcalorimeters array for the X-IFU instrument on board of Athena

Luciano Gottardi

13th Pisa meeting on advanced detectors

Isola d'Elba, Italy, May 24-30, 2015

X-ray Integral Field Unit

Netherlands Organisation for Scientific Research

How do black holes grow and influence the Universe? How does ordinary matter assemble into the large scale structures we see today?

Nandra et al. 2013, 2014

The Athena X-ray Observatory launch ~2028

Willingale et al, 2013 arXiv1308.6785

L2 orbit Ariane V Mass < 5100 kg Power 2500 W 5 yĕār mīššion

X-ray Integral Field Unit: dE: 2.5 eV Field of View: 5 arcmin Operating temp: 50 mK

Barret et al., 2013 arXiv:1308.6784 L.Ravera et al. SPIE 2014

Silicon Pore Optics: 2 m² at 1 keV 5 arcsec HEW Focal length: 12 m Sensitivity: 3 10⁻¹⁷ erg cm⁻² s⁻¹

Wide Field Imager: dE: 125 eV Field of View: 40 arcmin High countrate capability

Rau et al. 2013 arXiv1307.1709

Science with the X-ray Integral Field Unit spatially resolved high-resolution X-ray spectroscopy

L. Ravera et al., SPIE 2014

the X-IFU must provide breakthrough capabilities for:

- Mapping in 3D the hot cosmic gas to measure motions and turbulence: e.g. to study the process of matter assembly in clusters, the AGN feedback on galaxy and cluster scales, ...
- **Detecting weak lines** to characterize metals in clusters, the missing baryons in the Warm-Hot Intergalactic Medium, ...

The X-IFU instrument on ATHENA

spatially resolved high-resolution X-ray spectroscopy

R. den Hartog et al., SPIE (2014)

Energy range:0.2 - 12 keVEnergy resolution:2.5 eV (E < 7keV)</td>Field of view:5 arcminPixel size: $< 5 \text{x5} \text{ arcsec}^2$ Non X-ray backgrnd: $< 5 \text{x10}^{-3} \text{ cts/cm}^2/\text{keV}$

These requirements can be met by

- a large array of **3840** Transition Edge Sensors with absorbers of **250** μ m x **250** μ m actively shielded
- Multiplexing factor: ~40 pixels/channel
- SQUID-based Frequency Domain Multiplexing
- TES based anti-coincidence detector

Bath temperature: **50mK**

Superconducting Transition Edge Sensors

Ti/Au Mo/Au Mo/Cu

- Electro-thermal feedback
- Heat input from photons:
- \rightarrow TES temperature and resistance **up**
- → Joule power **down**
- \rightarrow fast recovery
- self biasing in the transition

K. D. Irwin, Appl. Phys. Lett. 66, 1945 (1995)

TES micro-calorimeters Single photon detector

TES micro-calorimeters

X-IFU

Nb leads SiN membrane TES $150 \,\mu m$ **Bismuth** absorber 4um Au absorber TES x1,80 SED 10.0kV WD19.6mm Std.-P.C.23.6 HighVac.

> n Std.-P.C.40.0 HighVac. x2,300 10um 0173 May 13 203

TES physics on recently understood

• TES resistance in transition depends on T, I, and B

• TES behaves as a **weak-link (Josephson junction)** due to proximity effect induced by the superconducting Nb leads

Superconducting weak-link effects in TESs

J.Sadleir *et al.* PRL 104, 047003 (2010) S.Smith *et al.* JAP,114, 074153 (2013)

L. Gottardi *et al.* APL, 105, (2014)

- Weak-link effects observed at NASA-GSFC with TES microcalorimeters under dc bias
- TES bolometers at SRON under ac-bias: Direct measurement of the Josephson current and of the TES **non-linear inductance**

• Modelling of the resistive transition in a TES using Josephson junction theory

TESs are very sensitive detectors

FWHM=1.81 eV@ 6keV dE_{fwhm}=0.03%

Due to publication right issues this picture has been removed intentionally. Please contact the author for more info.

courtesy S.Bandler NASA-GSFC

$1.3x10^{-19} \text{ W/Hz}^{1/2}$

Due to publication right issues this picture has been removed intentionally. Please contact the author for more info.

T.Suzuki SRON 2015

Current state-of the art of TES **microcalorimeters**

NASA-Goddard

Current state-of the art of TES **bolometers**

SRON (SAFARI)

TES bolometers array developed at SRON

MR

TES: Ti/Au bilayer 15/50nm

Best performing X-ray microcalorimeters at SRON

TES: TiAu thickness: 20/55 nm size: 150×186 μm2

absorber: Cu/Bi thickness: 1/2.64 μm size: 100×100 μm2

- Measurement done under DC bias.
- Stopping power 74%, low filling factor
- Energy scan performed at the Synchrotron Radiation facility BESSY (Berlin)

Best performing X-ray microcalorimeters at SRON

TES: TiAu thickness: 20/55 nm size: 150×186 μm2

absorber: Cu/Bi thickness: 1/2.64 μm size: 100×100 μm2

- Measurement done under DC bias.
- Stopping power 74%, low filling factor
- Energy scan performed at the Synchrotron Radiation facility BESSY (Berlin)

SRON X-ray TES microcalorimeters array

(2006)

Detectors array configuration for X-IFU

(Under study)

GODDARD SPACE FLIGHT CENTER

Due to publication right issues this picture has been removed intentionally. Please contact the author for more info.

QE=94%

courtesy S.Bandler, 2015

Frequency Domain Multiplexing

Multiplexing needed due to limited cooling power and to reduce harness complexity

- **Modulation**: shift in frequency space by multiplication with carrier
- TES works as Amplitude Modulator (AM)
- High Q-factor superconducting LC resonators needed for voltage bias

frequency

FDM feature

- One TES per row
- One LC filter per TES
- One SQUID amplifier per column
- Voltage bias comb per column

8+ pixels FDM demonstration

Cryogen-free DR Leiden Cryogenics

FDM channels

IFU

Pixels array from NASA-Goddard

GODDARD SPACE FLIGHT CENTER

Current status FDM demonstration

Almost quantum limited two-stage SQUID amplifier

L.Gottardi et al. ASC 2014

Very good SQUID performance with GSFC detectors

Current status FDM demonstration

2.3MHz dE~ 2.6±0.1 eV

Due to publication right issues this picture has been removed intentionally. Please contact the author for more info.

3.7MHz dE~ 2.7±0.1 eV

Due to publication right issues this picture has been removed intentionally. Please contact the author for more info.

H. Akamatsu, 2015

- Single pixel high energy resolution demonstrated in the representative frequency range
- Work on-going to improve statistics and the multiplexing performance

Demonstration Model: 4x40 pixels FDM demonstration

Baseline FPA configuration: Apply same shield / suspension geometry in DM + EM, optimize 50 mK geometry for EM

H.van Weers, 2014

Anti coincidence detector

ATHENA : the Advanced Telescope for High ENergy Astrophysics

CNRIFN

ന

CryoAC 2x2 array design and mechanical I/F with the TES array

Some measurements from AC-S5 pulse = 1 Athermal component 1.0 -Thermal Component Fotal double pulse fit Voltage [V] τ_e~ 20 us (sample not optimized for τ_{n}) * Ath 0.000 0.002 0.004 0.000 0.008 Time [s] $E_{\text{measured}} = \left(\frac{L}{L+1}\right) \cdot E_d = \left(\frac{L}{L+1}\right) \cdot \varepsilon_{ph \to TES} \cdot E_{\gamma}$ AC-55 2 TES Energy spectrum from the double pulse fitting 25 bonded Gauss fit E, = (2769 ± 137) eV o_ = (1933 ± 281) eV 20 AC-S5 illuminated Occurrence [1000 eV per bin] Cu E, = (25880 ± 154) eV by 60 keV ²⁴¹Am Koz + kß e_ = (4913 ± 326) eV 10 20000 40000 60000 80000 100000 Athermal + Thermal energy [eV]

ATHENA Italian Team, X-IFU meeting with CNES/IRAP, Genova, 4 March 2015

courtesy C. Macculi INAF

Focal plane assembly

FPA technology developments 2011-now:

- Interconnects
- Detector mounting
- Kevlar thermal insulating suspension
- Magnetic shielding:
 - Niobium (superconducting)

X-IFU

Cryoperm 10

Key technology under development at SRON

High Q-factor superconducting LC filters

Polyimide flex chips

Electroplated Au bumping

Fig. 10. Typical Au-bump shape (45 degree view) from 15x15 µm photoresist stencil.

Fig. 11 Typical Au-bump shape (90 degrees side view) from 10x10 μm resist stencil.

Detector cold head

M.Bruijn, 2015

