

The XENON1T Experiment

Guillaume Plante

Columbia University

on behalf of the XENON Collaboration

13th Pisa Meeting on Advanced Detectors - May 29, 2015

XENON Collaboration

XENON Program

XENON10

XENON1T/XENONnT

2012-2018 / ~2018-2022

3300 kg / 7000 kg

Projected (2018) / Projected (2022)

2008-2015

161 kg

2005-2007

25 kg

Achieved (2007) Achieved (2011) $\sigma_{\rm SI} = 8.8 \times 10^{-44} \,{\rm cm}^2 \quad \sigma_{\rm SI} = 7.0 \times 10^{-45} \,{\rm cm}^2 \qquad \sigma_{\rm SI} \sim 2 \times 10^{-47} \,{\rm cm}^2 \,/\, \sigma_{\rm SI} \sim 3 \times 10^{-48} \,{\rm cm}^2$ Achieved (2012) $\sigma_{\rm SI} = 2.0 \times 10^{-45} \,\mathrm{cm}^2$

Why Xenon?

- Large mass number A (~131), expect high rate for SI interactions $(\sigma \sim A^2)$ if energy threshold for nuclear recoils is low
- ~50% odd isotopes (129 Xe, 131 Xe) for SD interactions
- No long-lived radioisotopes (with the exception of $^{136}{\rm Xe},~T_{1/2}=2.2\times10^{21}\,{\rm yr})$, Kr can be reduced to ppt levels
- High stopping power (Z = 54, $\rho = 3 \,\mathrm{g} \,\mathrm{cm}^{-3}$), active volume is self shielding
- Efficient scintillator (\sim 80% light yield of NaI), fast response
- Scalable to large target masses
- Nuclear recoil discrimination with simultaneous measurement of scintillation and ionization

Dual Phase TPC Principle

- Bottom PMT array below cathode, fully immersed in LXe to efficiently detect scintillation signal (S1).
- Top PMTs in GXe to detect the proportional signal (S2).
- Distribution of the S2 signal on top PMTs gives xy coordinates while drift time measurement provides z coordinate of the event.
- Ratio of ionization and scintillation (S2/S1) allows discrimination between electron and nuclear recoils.

XENON1T@LNGS

XENON1T@LNGS

XENON1T@LNGS

From XENON100 to XENON1T: A Few of the Challenges

XENON1T: Water Cherenkov Muon Veto

- Water tank $10\,\mathrm{m}$ high and $9.6\,\mathrm{m}$ diameter
- Interior lined with 3M specular reflector foil
- Water tank construction completed 2013/12
- 84 high QE 8" Hamamatsu R5912 PMTs
- μ -induced neutron background < 0.01 evt/yr
- Trigger efficiency > 99.5% for neutrons with μ in water tank, ~78% with μ outside
 - Details in Aprile *et al.*, JINST 9, P11006, 2014

XENON1T: Cryostat, TPC

- Double-wall vacuum insulated cryostat, constructed from selected low-activity stainless steel
- Outer vessel $2.4 \,\mathrm{m}$ high, $1.6 \,\mathrm{m}$ diameter, inner vessel ${\sim}2 \,\mathrm{m}$ high, $1.1 \,\mathrm{m}$ diameter
- 3.3 tons LXe, ${\sim}0.7\,{\rm m}^3$ TPC, active target mass of 2 tons
- 248 3" PMTs Hamamatsu R11410-21, 36% average QE, $< 1\,\mathrm{mBq/PMT}$ in U/Th
- Background $\times 100$ lower than XENON100
- Custom low-activity high voltage feedthrough

XENON1T: Cryostat, TPC

- Double-wall vacuum insulated cryostat, constructed from selected low-activity stainless steel
- Outer vessel $2.4\,m$ high, $1.6\,m$ diameter, inner vessel ${\sim}2\,m$ high, $1.1\,m$ diameter
- 3.3 tons LXe, ${\sim}0.7\,{\rm m}^3$ TPC, active target mass of 2 tons
- 248 3" PMTs Hamamatsu R11410-21, 36% average QE, $< 1\,\mathrm{mBq/PMT}$ in U/Th
- Background $\times 100$ lower than XENON100
- Custom low-activity high voltage feedthrough

XENON1T: Cryostat, TPC

- Double-wall vacuum insulated cryostat, constructed from selected low-activity stainless steel
- Outer vessel $2.4 \,\mathrm{m}$ high, $1.6 \,\mathrm{m}$ diameter, inner vessel ${\sim}2 \,\mathrm{m}$ high, $1.1 \,\mathrm{m}$ diameter
- 3.3 tons LXe, ${\sim}0.7\,{\rm m}^3$ TPC, active target mass of 2 tons
- 248 3" PMTs Hamamatsu R11410-21, 36% average QE, $< 1\,\mathrm{mBq/PMT}$ in U/Th
- Background $\times 100$ lower than XENON100
- Custom low-activity high voltage feedthrough

XENON1T: Cryogenics

- Design based on experience acquired by operating XENON10, XENON100, and XENON1T Demonstrator
- Heat load below 50 W (without circulation)
- Redundant 200 W pulse tube refrigerators
- One PTR can be serviced while the other is in operation
- Backup liquid nitrogen cooling
- Circulation at ${\sim}100$ slpm through heat exchangers

XENON1T: Cryogenics

XENON1T: Xe Storage

- Double-wall, high-pressure (70 atm), vacuum insulated, LN2 cooled sphere
- Designed to store ${\sim}7.6$ tons of xenon, in liquid form at $-100^{\circ}{\rm C}$ or in gaseous form at room temperature
- Detector can be filled with liquid xenon directly instead of condensing xenon gas
- In case of emergency, liquid xenon from the detector can be recovered in a few hours

XENON1T: Purification

- Continuous GXe circulation at ~ 100 slpm
- Purification using high-flow heated getters
- Two parallel circulation pumps and purification circuits
- GXe purity in-situ analytics
- Continuous monitoring of impurity concentrations (e.g. H₂O)

XENON1T: Kr Removal

- Building custom designed cryogenic distillation column for Kr removal
- XENON1T Kr/Xe concentration requirement is $< 0.2\,{\rm ppt},$ aim at $< 0.1\,{\rm ppt}$ with the column
- High throughput, 3 kg/hr at 10^4 separation
- 3.5 tons in \sim 1.8 months (single pass)
- Custom gas purity diagnostics (online, 83m Kr tracer, and offline, ATTA, RGMS, RGA + cold trap)

XENON1T: Expected Backgrounds

ER background, before S2/S1 discrimination

- Full MC simulation of the detector (TPC, PMTs, cryostat, water shield) with GEANT4 to predict ER background
- Neutrons from (α, n) calculated with SOURCES-4A
- Total ER background rate expected to be ${\sim}3\times10^{-5}\,\rm{evts/keV_{ee}/kg/day}$ before S2/S1 discrimination

 Single scatters, 1 ton fiducial volume, [2,12] keVee, [5,50] keVr, 99.75% S2/S1 discrimination, 40% NR acceptance

Source	Background (evts/yr)
ER from materials	0.06
85 Kr (0.2 ppt nat Kr)	0.07
222 Rn (1 μ Bq/kg)	0.08
Solar neutrinos	0.08
2 u 2eta	0.02
NR from materials	0.25
Total	0.56

XENON1T: Sensitivity

• Spin-independent WIMP-nucleon interaction cross section sensitivity of $2 \times 10^{-47} \text{ cm}^2$ for WIMPs with a mass of $50 \text{ GeV}/c^2$

XENON1T: Sensitivity

• Spin-independent WIMP-nucleon interaction cross section sensitivity of $2 \times 10^{-47} \text{ cm}^2$ for WIMPs with a mass of $50 \text{ GeV}/c^2$

XENONnT: Upgraded XENON1T Detector

- Rapid deployment possibility: no modifications to infrastructure required, only construction of a larger inner vessel and TPC
- Additional $\sim\!200$ PMTs and DAQ electronics channels for the upgraded TPC
- Target mass of ~6 tons, sensitivity to spinindependent WIMP-nucleon elastic scattering cross sections of $3 \times 10^{-48} \, \mathrm{cm}^2$

Conclusion

- XENON1T under construction at LNGS, water tank, service building, cryostat support, cryostat, storage, cryogenics, and purification completed
- Integration of primary systems (cryostat, cryogenics, storage, purification) completed
- Primary systems currently under commissioning
- TPC assembly in summer 2015 at LNGS, installation in early fall
- Aiming at science run starting before the end of 2015!
- XENONnT, possibility of a rapid upgrade path included in the XENON1T design