

THE BESIII CGEM GROUP

A. Amoroso^(a,b), R. Baldini^(c), M. Bertani^(c), D. Bettoni^(d), F. Bianchi^(a,b), A. Calcaterra^(c), V. Carassiti^(d), S. Cerioni^(c), J. Chai^(a,g), G. Cibinetto^(d), F. De Mori^(a,b), M. Destefanis^(a,b), J.Dong^(c,g), M.Dong^(g), R. Farinelli^(d,e), L. Fava^(a,b), G. Felici^(c), E. Fioravanti^(d), I. Garzia^(d), M. Gatta^(c), M. Greco^(a,b), J.F. Hu^(a,b), T. Johansson^(h), C. Leng^(a,g), H. Li^(e,g), Z. Liu^(g), M. Maggiora^(a,b), S. Marcello^(a,b), P. Marciniewski^(h), M. Melchiorri^(d), G. Mezzadri^(d,e), G. Morello^(c), Q. Ouyan^(g), S. Pacetti^(f), P. Patteri^(c), A. Rivetti^(a), C. Rosner⁽ⁱ⁾, M. Savriè^(d,e), S. Spataro^(a,b), E.Tskhadadze^(c,j), K. Wang^(g), L. Wu^(g), X. Ji^(g), M. Ye^(g), F. Zallo^(c), Y. Zhang^(g), J. Sosio^(a,b), S. Spataro^(a,b), S. Sp L. Zotti^(a,b)

^(a)INFN-Turin, ^(b)University of Turin, ^(c)LNF-INFN, ^(d)INFN-Ferrara, ^(e)University of Ferrara, ^(f)INFN and University of Perugia, ^(g)Institute of High Energy Physics, ^(h)Upsala University, ⁽ⁱ⁾University of Mainz, ^(j)Joint Institute for Nuclear Research (Dubna)

Muon identifier 9/8 layers of RPC

NIM A614 (2010)

EMC: *σ*E/E (1GeV)=2.5% position resolution = 0.6 cm

development to replace the Inner Drift Chamber by 2017

CGEM BASED INNER TRACKER FOR BESIII

Storage Ring circumference of about 237 m

Center of mass energy [2-4.6] GeV

Peak luminosity ~ 10⁻³³ cm⁻²s⁻¹

GAS ELECTRON MULTIPLIER

A thin polymer foil, metal-coated on both sides, is chemically pierced by a high density of holes.

On application of a voltage gradient, electrons released on the top side drift into the hole, multiply in avalanche and transfer to the other side.

A Cylindrical GEM (CGEM)

Read-out

induction gap 5 um 50 µm 55 µm 70 սm

REQUIREMENTS AND INNOVATIONS

Detector Requirements

- Rate capability: ~10⁴ Hz/cm²
- Spatial resolution: $\sigma_{xv} = -120 \ \mu m$: $\sigma_z = -1 \ mm$
- Momentum resolution:: σpt/Pt =~0.5% @1 GeV
- Efficiency = $\sim 98\%$
- Material budget $\leq 1.5\%$ of X₀ for all layers
- Coverage: 93% 4π
- Operation duration ~ 5 years

- Three active layers
- Active area
 - L1 length 532 mm
 - L2 length: 690 mm
 - L3 length: 847 mm
- Inner radius: 78 mm;

- Proportional gains above 10³ are obtained in most common gases.
- Cascaded GEMs permit to obtain larger gains
- Spatial resolution determined by chamber and readout electrode geometries

p_{tot} (GeV/c) Analogue readout to reach the required spatial resolution with a reasonable number of channels. A dedicated ASIC chip will be developed.

Anode plane with jagged strips to limit the parasitic capacitance

Rohacell will replace the honeycomb in the cathode and anode structure with a substantial reduction of the thickness of the detector.

PROJECT STATUS, PLANS AND CONCLUSIONS

- Cathode and three GEM layers of the first cylindrical prototype have been assembled.
- Final assembly detector expected by September 2015.
- Final Inner Tracker design will be finalized by 2015.
- Frontend electronics design ongoing.

• Spatial resolution evaluated as the σ of the residual distribution w.r.t. the fitted track.

Gain

Spatial resolution ~90 μ m in the plateau region, including tracking error.

A new beam test is planned to perform measurement in the magnetic field up to 1 Tesla. µTPC mode readout will be tested.

FRONTIER DETECTORS FOR FRONTIER PHYSICS 13th Pisa Meeting on Advanced Detectors 24-30 May 2015 - La Biodola, Isola d'Elba (Italy)

- Full detector production, assembly and test by 2016.
- Installation and commissioning in 2017.

Design, construction and test of a CGEM prototype and readout electronics funded by the Foreign Affairs Ministry agreement of scientific cooperation for a Joint laboratory "INFN-IHEP".

BESIII Winter Collaboration Meeting Guili

The **BESIIICGEM** project has been recently selected as one of the project funded by the European Commission within the call H2020-MSCA-RISE-2014. HORIZON

More information @ http://www.lnf.infn.it/esperimenti/bes3/

Contact persons: gianluigi.cibinetto@fe.infn.it, mauro.savrie@fe.infn.it, marco.maggiora@to.infn.it, giulietto.felici@Inf.infn.it, alessandro.calcaterra@Inf.infn.it, rinaldo.baldini@Inf.infn.it