Modeling of Radiation Damage Effects in Silicon Detectors at High Fluences HL LHC with Sentaurus TCAD

D. Passeri^(1,2,*), F. Moscatelli⁽³⁾, A. Morozzi^(1,2), G.M. Bilei⁽²⁾

1) Dipartimento di Ingegneria, Università di Perugia, via Duranti 93, 06125 Perugia, Italy. 2) Istituto Nazionale di Fisica Nucleare, via Pascoli 1, 06123 Perugia, Italy. 3) Istituto per la Microelettronica e Microsistemi, CNR Bologna, Italy.

Introduction and background

- ✓ TCAD radiation damage: historical perspective (University of Perugia model).
- ✓ Hierarchical approach based on increasing number of deep-level recombination centres / trap states.
- ✓ Comprehensive modelling of device behaviour with fluence:
 - depletion voltage, leakage current (α), "double peak" shaped electric field, charge collection efficiency,...
- ✓ Meaningful and physically sounded parametrization.
- \checkmark Three levels with donor removal and increased introduction rate (to cope with direct inter-defect charge exchange numerical issues...).

[1] D. Passeri, P. Ciampolini, G.M. Bilei, and F. Moscatelli, *Comprehensive* Modeling of Bulk-Damage Effects in Silicon Radiation Detectors, IEEE Trans. on Nuclear Science, vol. 48, no. 5, October 2001

Charge collection at T=248K, V_{BIAS} =500V

- \checkmark *n* type and *p* type substrate.
- \checkmark Suitable for fluences up to 10¹⁵ cm⁻² 1 MeV neutrons.

[1] Experimental

1x10¹⁵ 2x10¹⁵ 3x10¹⁵ 4x10¹⁵ 5x10¹⁵

Fluence (n_{ed} cm⁻²)

Simulated

Charge collection at T=300K, V_{BIAS} =900V

25000

20000

15000

10000

5000

0

(e)

Charge

Collected

[2] M. Petasecca, F. Moscatelli, D. Passeri, and G. U. Pignatel, Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors, IEEE Trans. on Nuclear Science, vol. 53, no. 5, October 2006.

The "new" University of Perugia model

- ✓ Extend the predictive capabilities to HF HL-LHC radiation damage levels (e.g. fluences > 2.0×10^{16} cm⁻² 1 MeV neutrons).
- ✓ Keep low the number of traps (e.g. fitting parameters).
- ✓ New effects (e.g. charge multiplication <- avalanche effects).
- ✓ Physically grounded approach, no over-specific modelling.
- ✓ Capture cross-section variations (σ_n , σ_n), keeping the same (already characterized) defects: energy levels, introduction rates, ...
- ✓ Predictive capabilities V_{dep} , $I_{leakage}$ (α), "double peak" shaped electric field.
- ✓ Charge collection @Φ, @T, $@V_{bias}$, ... (e.g. device independent).

A new PG 248

 $5.0x10^{15}1.0x10^{16}1.5x10^{16}2.0x10^{16}2.5x10^{16}$

Fluence $(n_{eq} \text{ cm}^{-2})$

sh2=new value

Effect of oxide charge/interface trap states on isolation

n+

1e+16 1e+15 1e+14 1e+13 1e+12 1e+11 1e+11

✓ p_spray isolation capabilities are affected by combined action of oxide charge buildup and interface trap state density increase with fluence.

 \checkmark Net doping concentration.

 \checkmark Effect of energy level of Si/SiO₂ acceptor trap state: the electron conduction (inversion layer) path suppression increases the interstrip resistance $(\Phi = 2 \times 10^{16} \text{ n/cm}^{-2}).$

(*) daniele.passeri@unipg.it

Conclusions

✓ New University of Perugia Si damage modelling scheme, suitable within commercial TCAD tools.

0.0

- ✓ Predictive capabilities extended to high fluences HL-LHC radiation damage levels (e.g. fluences > 2.0×10^{16} cm⁻² 1 MeV neutrons).
- \checkmark Further validation with experimental data comparisons.
- \checkmark Study of the effect of the interface (Si/SiO₂) trap states / oxide charges and trap parameter extraction from measurements are under way (combined effect of acceptor and donor states).
- ✓ Future plans: application to the optimization of Si pixel detectors (3D detectors, 2D planar detectors, ...).

References

- [1] Lozano et al., Comparison of radiation hardness of P-in-N, N-in-N, and Nin-P silicon pad detectors, IEEE Trans. Nucl. Sci. 52 (5) (2005).
- [2] Affolder et al., Collected charge of planar silicon detectors after pion and proton irradiations up to 2.2×10^{16} n/cm² NIM A, Vol. 623 (2010).