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Precision Timing Calorimetry 
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4D event reconstruction 
opens new territory in 
difficult experimental 
environments.  



Challenges at HL-LHC 
 Large samples needed to fully exploit LHC, goal : collect x10 more 

– <PU> ≈ 140 at HL-LHC  50nb/sec , collect 3000 fb-1 

 Some key signatures at HL-LHC 
– Higgs VBF and WLWL scattering with forward jets, vertex identification 

for Hγγ 
– Searches in final states with MET from LSP 
– Precision studies of new physics which may be discovered at LHC  
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VBF Hττ at 0 PU  

VBF Hττ at 140 PU  
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Precision timing at HL-LHC 
 Target resolution of O (20-30 psec) 
– Allows reconstruction of Hγγ vertex and ~x10 

pileup suppression 
 Applications of timing information:  
– Object level : (e.g. identify forward PU jets for VBF 

Higgs, WW scattering) 
– Hit level : (e.g. timing-based cluster cleaning)  
– Event level (hard scatter vertex reconstruction, e.g. 

for Hγγ)  
– Separate spatially overlapping vertices that 

originate at different times 
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Photon Traces in LYSO Crystal 

t0 t1 t2 

t3 t4 t6 

 For high energy showers in high light yield crystals, number of 
scintillation light yield is very large (>105 / GeV).  

 Photon detection at one location in the crystal will be an averaged 
transit time spectrum   
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Scintillation Light Time Spectrum 
 Scintillating crystals get often classified in fast and slow by their light output 

decay constants. This is often 10s of ns – PWO, LYSO : ~40 ns. 
 Timing information is extracted from the leading edge of the signal – the rise 

time of the light output is important.   
 LYSO scintillation light properties :  

 Light output rise time tR < 75 ps, 35000 photons/MeV, tD = 33 ns.  
 See : S Seifert, J H L Steenbergen, H T van Dam and D R Schaart, 2012 

JINST 7 P09004. doi:10.1088/1748-0221/7/09/P09004 
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Optical Transit Time Spread 
 Effect of the scintillation photon arrival at the photo detector we refer to 

as Optical Transit Time Spread. 

 Experimental program to explore ultimate timing resolution, in particular 
the impact of the optical transit time spread. 

γ x 

γ x 

t1 

t2 

EM shower propagation 
snapshot 

Scintillation light propagation 
cS < c 

100 GeV γ 

23 cm 

Time evolution of a shower from photon in CMS ECAL PbWO crystal (25 cm long).   
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Shower Fluctuations 

29.05.2015 8 Adi Bornheim, Elba 2015, Precision Timing Calorimeter   

• Utilizing the precise time of arrival requires association with a precise 
spatial information. 

• Shower depth fluctuation may get partly compensated by light 
propagation to the photo detector. 

• Shower fluctuations – in particular conversion depth for photons – need 
to be considered, relevant dimensions RM and X0 are order cm (30 ps). 

• Shown here : GEANT hit time spectrum in a solid PbWO crystal matrix, 
100 GeV photons. 
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Timing Performance of CMS ECAL 
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Large PbWO crystal calorimeter. 
Results from pp collision data at LHC : 
 Electron showers from Z→ee decay ∆tTOF : 

~270 ps, single channel : ~190 ps, without 
path length correction : ~380 ps  

 Constant term of resolution : ~20 ps in 
test beam, ~70 ps in situ (same clock). 

 Studies on jet timing vertex resolution 
suggest very promising performance. 

 
 



Fast timing with Microchannel Plates   

 Starting point in exploring precision timing in calorimeters 
 Secondary emitter material as active element in a sandwich type 

calorimeter 
 First proposed: “On possibility to make a new type of calorimeter: 

radiation resistant and fast”, A. I. Ronzhin et. al, preprint IFVE 90-99, 
1990. 
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electron 

MCP 

Lead absorber 
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 Secondary particles from EM shower are detected by MCP 
 Signal is proportional to the number of secondaries  energy of parent 
 Most of secondary particles are low energy  MCP very efficient  
 MCP are intrinsically very fast  calorimeter with very fast timing  



Photek 240 and Photonis MCP-PMT 
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10 μm pore size, 41mm  aperture, PC-MCP 
distance ~5mm, rise time~60 ps, SPTR~40 ps 

25 μm pore size, 60x60mm2 sensitive 
area, rise time~300 ps, SPTR~120 ps,  

Photek Photonis 

• TOF time resolution for protons 
between two MCPs (Photonis vs 
Photek) found to be ~17 ps. 

• MCPs in SEC mode better than 40 ps. 
• Includes 5 ps from readout (DRS4).  
• MCPs serve as our reference timing.  

DRS4 boards 
5 GSPS, 700 MHz 

A. Ronzhin et. al. NIM A, Vol 749 p 65-73 



From single MIP to full showers with MCPs  
See poster presentation : 
Fermilab: Sergey Los, Erik Ramberg, Erik Ramberg, CalTech: Artur 
Apresyan, Si Xie, Maria Spiropulu, U. Of Chicago: Heejong Kim 
And forthcoming NIM paper (submitted) from the same authors. 
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Photek A an B 

Lead Photonis 

Beam 

• Measurements of shower profile with MCPs as active 
layer. 

• Time resolution as a function of the shower depth : 
~13 ps with Photek, <40 ps with Photonis. 

• Time resolution among different transverse regions 
inside a shower : ~30 ps with Photonis 

• To appear in NIM. 
 
 



Experimental setup LYSO timing 

 Study the effect of scintillation (of LYSO) on time resolution 
 Minimize the effect of optical transit by using a relatively small 

LYSO crystal (1.7cm x 1.7cm x 1.7cm cube) 
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TOF Measurements (1.7 cm3 LYSO) 
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measure t1-t0  
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4 GeV electrons  
σt = 70.4 ± 2.9 ps 

8 GeV electrons  
σt = 57.4 ± 2.0 ps 

16 GeV electrons  
σt = 40.6 ± 1.5 ps 

32 GeV electrons  
σt = 32.5 ± 2.1 ps 



Increased Light Path Complexity 
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• R&D for HL-LHC on LYSO/W Shashlik 
calorimeter.  

• Radiation hard in HL-LHC environment up to 
3 ab-1,energy resolution of 10%/sqrt(E)⊕1%. 

• Resolution performance demonstrated in test 
beam on a 4x4 matrix. 

• Radiation hardness of LYSO tested up to 80% 
of the required dose. 

• Use single Shashlik cell to test timing 
performance with very complex light path.   



Beam Test Setup Shashlik Cell 
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Wavelength Shifter Timing Properties  

• Pulse rise time of bare LYSO driven by MCP+DRS4, in Shashlik configuration 
by timing characteristics of the wavelength shifter. 

• Ray tracing simulation of the full optical chain, including LYSO and WLS 
timing properties reproduces the measurement. 

• No additional shaping of the pulse due to the complex light path.  
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simulation in black  
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Shashlik Timing Performance 

• Performance of solid LYSO 
cube and LYSO/W scales 
with the rise time 
difference due to the WLS. 

• Few 10 ps resolution 
achievable with LYSO 
based calorimeter, 
reaching ~32 ps at 32 GeV 
equivalent signal. 
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NIM A, Vol 794 (2015) p 7-14 



Current Systematic Limits 

• Extended measurement up to 150 GeV suggest that the systematic 
limit is small. 

• Fit yields constant term compatible with the reference time 
resolution of around 15 ps.  
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Referenc time precision 



Light Sensing Performance 

• Differential timing resolution 
of two MCPs read out with 
DRS4, illuminated with a 50 ps 
FWHM laser, DRS4 readout  : 
σt = 7.2 ps. 

• Hamamatsu MCP : IRF = 45 
ps, TTS = 25 ps.  

• Similar performance to MIP in 
a bare MCP.  

• Multiphoton timing of MCP 
resolution approaches limit of 
readout chain. 
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50 ps Laser 

 
σt = 7.2 ps. 



Optimized Pulse Reconstruction 

• Extract timing from LYSO signal only from the initial ~2.0 ns of 
the pulse, fitting a linear function to 10 DRS samples of 200 ps. 

• Further significant improvement of the performance down to 42 
ps at 32 GeV with a reference time precision of about 20 ps. 

• We observe ringing like noise in the MCP signal after a few ns. 
Not present with SiPMs.  
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Referenc time precision 
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Shashlik cell time resolution : 
• Leading edge fit (20–60%)  
• Early leading edge fit (0-30%) 



Next Steps  

• Crystals and MCPs as sensing elements in a 
sampling configuration. 
 

• Will look at silicon sensors as well. Sensors suitable 
for calorimeters may not easily achieve 10 ps 
resolution – however large number of sensors may 
compensate this. 
 

• Measure timing performance of 4x4 LYSO/W matrix. 
 

• Move towards a MCP setup which covers entire 
showers to allow energy measurement.  
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Summary 
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• We measured the timing resolution of a LYSO/W Shashlik 
calorimeter cell to be 42 ps for 32 GeV electrons. 

• The timing is extracted from the same scintillation light 
signal used for the energy measurement. 

• We measure shower timing of high energy electrons with 
commercial MCPs at the level of 15 ps. 

• We expect further improvement of the LYSO based 
measurements with a better understanding of the photo 
sensor characteristics. 

• A large scale calorimeter with a time resolution of a few 
10 ps for pile-up mitigation at HL-LHC seems achievable.  



Backup 
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Some Related Poster at this Conference 
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• “Test beam results of micro channel plates in "ionisation mode" for the 
detection of single charged particle and electromagnetic showers “ , Speaker: 
Paolo Meridiani  

• “Energy and time resolution for a LYSO matrix prototype of the Mu2e 
experiment”, Speaker : Simona Giovannella  

• “Development of solar blind UV extended APD for readout of Barium Floride 
crystals”, Speaker : Prof. David Hitlin  

• “Test and characterization of SiPMs intended as detector for the MEG high 
resolution timing counter”, Speaker : Marcello Simonetta 

• “Fast Timing Detector R&D for the HL-LHC era”, Speaker : Dr. Sebastian White  

• “State of the art silicon photomultipliers with LSO: Ce codoped Ca scintillators 
achieve 84ps coincidence time resolution for PET” Speaker : Mr. MYTHRA 
VARUN NEMALLAPUDI 
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