

Design Optimization of Pixel Sensors using Device Simulations for Phase-II CMS Tracker Upgrade G. Jain¹ on behalf of CMS Collaboration

¹Department of Physics & Astrophysics, University of Delhi, Delhi, India

2D Pixel Structure

Introduction

- Si sensors high precision tracking devices. • Presently installed in CMS tracker - pixel & strip detectors.
- <u>HL-LHC upgrade</u> : Luminosity ~ $5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ Integrated luminosity ~ 3000fb^{-1} \rightarrow For inner layer pixel fluence $(n_{eq}) > 1X10^{16} \text{cm}^{-2}$ \rightarrow Harsh radiation environment!

• Need to optimize the pixel detector design to make it withstand such high radiation levels!!

- DC contact through Vias
- Gate SiO₂ thickness = $0.25 \mu m$
- Field SiO₂ thickness = $0.70 \mu m$

8 Possible Pixel Geometries

2. Identifying best geometry from the

Parameter Details

1. Identify crucial electric field

Pstop

- P-Type bulk doping concentration $N_{\rm b} = 3e12cm^{-3}$ • Implant doping : concentration $N_{im} = 1e19cm^{-3}$, depth $D_{im} = 1.5 \mu m$, type = gaussian, with a factor of 0.5µm times diffusion in all directions
- Temperature = 253K
- Damage Models Used : 2 bulk traps + QF + 2 N_{it} in quantity as described in figure below.
- * $QF = fixed positive oxide charge density, N_{it} = Interface traps at Si-SiO2 interface$

Bulk Damage

Trap Type	Energy Level (eV)	Density (cm ⁻³)	σ _e (cm ⁻²)	σ _h (cm⁻²)
Acceptor	E _c -0.51	4 x φ	2.0 x 10 ⁻¹⁴	2.6 x 10 ⁻¹⁴
Donor	E _v + 0.48	Зхф	2.0 x 10 ⁻¹⁴	2.0 x 10 ⁻¹⁴

Surface Damage

Тгар Туре	Energy Level (eV)	Density (cm ⁻³)	σ _e (cm ⁻²)	σ _h (cm ⁻²)
Acceptor	E _c - 0.60	0.6 x QF	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴
Acceptor	E _c - 0.39	0.4 x QF	0.1 x 10 ⁻¹⁴	0.1 x 10 ⁻¹⁴

 $E_{c} = Lowest energy level of conduction band, E_{v} = Highest energy level of valence band, <math display="inline">\Phi = Fluence, \sigma_{e} = Electron cross- section, \sigma_{h} = Hole cross- section$

3a. Effect of variation of d and D_{pst-psp} on the crucial electric field @ 1000V –

Maximum electric field vs fluence.

Cutline 0.9μm		d Effect : D _{pst-psp} =1µm	D _{pst-psp} Effect : d=150µm
		Pstop-25X100-Normal	Pstop-25X100-Normal

regions in device – Electric field across the sensor surface at different cutlines.

✓ Maximum electric field is at cutline of **0.9µm below the oxide, at strip curvature!!**

3b. Effect of variation of MO on the crucial electric field @ 1e16cm⁻²

fluence – Electric field across the sensor surface.

Cutline	Pstop - Pitch 50μm – Wide
0.9µm	d=200μm - N _{pst} =1e16cm ⁻³ - D _{pst} =1μm

8 pixel configurations @ 1000V –

Maximum electric field vs fluence.

✓ Pstop-Normal-25 & Pspray-Wide-50 have the least electric field!

* Leakage Current for a Pad Diode $1X 1X200 \mu m^3$ – Expected & Simulated current as a function of fluence.

1.2×10^{-12} 1.1x10 ⁻¹² 1.0x10 ⁻¹²	─■─ Expected ─●─ Simulated	_
1.0×10^{-12}	• Onnulated	
9.0X10 -		

✓ Electric field reduces for larger detector depth. ✓ Small effect of variation of $D_{pst-psp}$ at high fluence.

✓ MO is effective in reducing the electric field, though the effect is a small one.

✓ Current increases linearly with fluence at 253K using: $\Delta I = \alpha \Phi V$, where V is the volume of sensor. ✓ Calculated and Simulated IV characteristics are in very good agreement for fluence below 2e15cm⁻².

* Expanded forms $N_{pst - psp} = Concentration of pstop - pspray, D_{pst - psp} = Depth of pstop - pspray, d = Detector active depth, MO = Metal overhang$ of symbols used:

Summary :

- Of the 8 designs, normal-25µm & wide-50µm configurations of pstop & pspray structures respectively, are the most radiation tolerant.
- The best parameters so far seem to be: $d=200\mu m$, $N_{pst-psp}=1e16-1e15cm^{-3}$, $D_{pst-psp}=1\mu m$, MO=4 μm .
- The parameters reported here are optimized looking at the operation stability against breakdown provided by the critical field, however a further study on charge collection efficiency (work on going), is needed to finalize the best device layout parameters.

Acknowledgement : Authors are thankful to UGC-JRF, DST & Delhi University for financial research support.

@1000V

@ 500 V

FRONTIER DETECTORS FOR FRONTIER PHYSICS – 13TH PISA MEETING ON ADVANCED DETECTORS. La Biodola, Isola d'Elba, Italy. 24-30 May 2015.