Results on muon absorption tomography for nuclear storage facility at Sellafield

Nicola Mori

21/7/2014

The study case

- Sellafield scenario #2:
 - Cylindrical storage silo
 - Concrete + reinforced concrete
 - Dimensions ~ some m
- Uranium debris:
 - Unknown number/position
 - Expected size ~ some cm
- Unknown "noise" content:
 - Variable concrete density
 - High/low density debris
 - Clothes, bricks, steel rods...
 - Air bubbles
 - ???

<u>Target</u>: assess the uranium detection capability as a function of data acquisition time and the effect of noise materials

Muon absorption tomography

- Detector size ~ distance from target
- Target (U) size << detector size
- Stereoscopic view
- 3D position reconstruction with only one detector
- Need to estimate the expected event count when no U is present ("background")

Back-projection technique

- Back-extrapolate reconstructed tracks on layers intersecting the target
- Build track density maps
- Expected event count deficit w.r.t. the case with no U target
 - Background subtraction to extract signal

Expected max. S/N & min. size when the backprojection layer intersects the U sample

Monte Carlo simulation

- Checklist:
 - Simulation code
 - Generic simulation code developed in Florence, based on Geant4
 - Realistic muon generator
 - Shape, normalization
 - Scenario #2 geometry implementation
 - Realistic detector implementation
 - Reconstruction and analysis routines
 - # of simulated events \rightarrow acquisition time

Muon generator

Bonechi, L., et al., Intl. Cosmic Ray Conf. Proc. (2005), 283

- Based on ground measurements with a magnetic spectrometer
- 0.1 GeV/c < p < 130 GeV/c
- 0 deg < θ < 80 deg
- Smoothing + discretization
- Hit&Miss sampling of (E_k, θ)
- Random generation point on a horizontal surface

Silo geometry

- Homogeneous materials
- Densities (g/cm³): reinforced concrete 5, stainless steel 8.03, concrete 2.3, uranium 18.95
- Arbitrary number of U and air cubes with arbitrary position and size

Detector implementation

- Maybe other reasons
 - Voxelized geometry?
- Some tentative solutions:
 - Kill low-energy, stuck tracks
 - Play with geometrical optimizations (voxels)
 - None of them worked
- Fallback solution: single, homogeneous, 2m x 2m detector layer.
 - Use MC truth for impact point
 - Position resolution: 0.3 cm

- 1st approach: MURAY-like detector
 - 2 XY layers made of triangular scintillating bars
 - Plane spacing 50 cm
 - Based on G4GenericTrap solid
- Too many rotations:
 - Degraded accuracy of net rotation
 - Low-energy electrons occasionally got stuck between two bars
 - Can't determine the current volume
 - Simulation job didn't end

Simulation scenario

- Flux parameters:
 - E_k ∈ [0.7, 130] GeV
 - $\theta \in [0, 80] \text{ deg}$
 - $\phi\in$ [-90, 90] deg
- Generation surface:
 - z = 5 m
 - x ∈ [-3, 65] m
 - y ∈ [-10, 10] m
 - Area: 1360 m²
 - Full coverage of the detector-silo acceptance
- Acceptance check
 - ~ 10^{12} generated
 - 1.2 x 10⁹ simulated
- Computation:
 - CPU time: ~ (1.5 days * 300 cores)
 - Size of output: ~ 330 GB

U and air samples

- (10 cm)³ U:
 (0, 0.2, 1.5) m (center)
 (0.5, -0.2, 1) m (bottom-far)
- (5 cm)³ U: (0, -0.15, 2) m (center) (-1, -0.15, 3.5) m (top-near)
- (2 cm)³ U: (0, 1, 2.6) m (lateral) (0, -0.2, 2.3) m (center) (-0.8, -0.8, 2.5) (lateral-near)
- (10 cm)³ air: (0, -0.2, 1.3) m (center-bottom)

The autobackground method

 Signal is computed as the difference of two backprojected maps:

S = (map without U)-(map with U)

- In real-life there is no "reference silo" without U to be used to measure the background map (i.e. without U)
- But much of the silo volume does not contain U (assumption)
- Idea: use the "silo with U" itself to estimate the background, exploiting the cylindrical symmetry of scenario #2

Data analysis

- Impact point and direction:
 - Retrieve true impact points on front layer and on an eventual back layer 50 cm apart (MC truth)
 - Apply a gaussian smearing with σ = 0.3 cm
 - Reconstruct the smeared impact direction
- Build back-projection maps
 - Bin size: (7x7) cm²
- Compute signal and S/N maps (see next slide)
- Estimate DAQ time
 - Integrate the flux over E_k , θ , ϕ and divide by the area of the generation surface to obtain (generated particles)/sec
- No data quality cut
 - Efficiency = 1

S/N estimation

- In difference maps, signal is computed as the difference between two independent Poisson variables → Skellam distribution
- $\sigma^2 = \mu_1 + \mu_2$
- $S/N = (N_1 N_2)/sqrt(\mu_1 + \mu_2)$
- S/N \approx (N₁ N₂)/sqrt(N₁ + N₂)

Simulation results

4000 3000 2000 1000 0 -1000 -2000 -3000 -4000 200 300 100 0 Y [cm]

The 10 cm U cube is not visible

The position of the two blurs at $Z \sim 1.75$ m is consistent with the predicted position on the X=50 layer of the shadow of the 10 cm U sample at X=0

S/N vs acquisition time

- For the 10 cm U sample @ X=0 and 5 cm U @ silo border
- Manual clustering
 - Signal is divided many bins
- For 10 cm U case: the probability of obtaining no fluctuation at Nσ level or more over ~ 1430 bins (3.5m x 4m with (7x14) cm² pitch) is:
 - N=3: 2%
 - N=3.5: 52%
 - N=4: 91%
 - N=5: 99.92%
 - N=6: 99.9997%
 - Computed in the large μ approx. of Skellam distribution, where μ = μ₁ = μ₂

Analysis of Multiple Scattering

- Turn off MSc in concrete
 - But not in U
- (2 cm)³ and (10 cm)³ samples @ center of silo
- (10 cm)³, off-axis sample @ X=80 cm
- ~ 4x10¹¹ generated events
- Very clear signal
 - MSc seems the limiting factor

Summary

- Feasibility study for U detection with muon absorption tomography technique
- Monte Carlo simulation: geometry, muon flux, detector
- Data analysis: backprojection, autobackgrond, S/N, DAQ time
- Detection capability strongly depends on the position of the sample
 - Nevertheless the 2 cm sample seems out of reach (MSc)
- Air bubbles seem to be not a problem (at this stage)
 - Results may vary when enlarging or changing the position
 - Density fluctuations may not be an issue (to be further investigated)
- S/N vs. time estimate
 - Need ~ 1 month to reliably detect a 10 cm U sample at center of silo
 - May (Will) vary with varying size and position

Outlook

- Towards a more realistic MC scenario:
 - Non-uniform concrete density
 - Macroscopic debris (steel rods, clothes etc.)
 - Neighbouring buildings
 - Realistic detector
- Analysis:
 - Event reconstruction
 - Automated scanning (X tomography, bin size)
 - Clustering algorithm
 - Improved S/N computation
 - Signal finding
- Checks:
 - Dependence on assumed flux
 - Acquisition time estimation
 - S/N
 - S/N vs. time for most probable high-density debris