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The study case

● Sellafield scenario #2:
● Cylindrical storage silo
● Concrete + reinforced concrete
● Dimensions ~ some m

● Uranium debris:
● Unknown number/position
● Expected size ~ some cm

● Unknown “noise” content:
● Variable concrete density
● High/low density debris

● Clothes, bricks, steel rods...
● Air bubbles
● ???

Target: assess the uranium detection capability as a function of data acquisition time 
and the effect of noise materials



  

Muon absorption tomography
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● Detector size ~ distance from target

● Target (U) size << detector size

● Stereoscopic view

● 3D position reconstruction with only 
one detector

● Need to estimate the expected event 
count when no U is present 
(“background”)

Incident muons

Missing tracks due to 
absorbed muons



  

Back-projection technique
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● Back-extrapolate reconstructed tracks 
on layers intersecting the target

● Build track density maps

● Expected event count deficit w.r.t. the 
case with no U target
● Background subtraction to extract 

signal
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Focusing effect
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Monte Carlo simulation

● Checklist:
– Simulation code

● Generic simulation code developed in Florence, based on 
Geant4

– Realistic muon generator
● Shape, normalization

– Scenario #2 geometry implementation

– Realistic detector implementation

– Reconstruction and analysis routines
● # of simulated events → acquisition time



  

Muon generator

Bonechi, L., et al., Intl. Cosmic Ray Conf. Proc. (2005), 283

● Based on ground measurements 
with a magnetic spectrometer

● 0.1 GeV/c < p < 130 GeV/c

● 0 deg < θ < 80 deg

● Smoothing + discretization

● Hit&Miss sampling of (E
k
, θ)

● Random generation point on a 
horizontal surface



  

Silo geometry

(from D. Mahon)

● Homogeneous materials
● Densities (g/cm3): reinforced concrete 5, stainless steel 8.03, concrete 2.3, uranium 18.95
● Arbitrary number of U and air cubes with arbitrary position and size

Top view Side views



  

Detector implementation
● 1st approach: MURAY-like detector

● 2 XY layers made of triangular scintillating bars
● Plane spacing 50 cm
● Based on G4GenericTrap solid

● Too many rotations:
● Degraded accuracy of net rotation
● Low-energy electrons occasionally got stuck 

between two bars
● Can't determine the current volume

● Simulation job didn't end
● Maybe other reasons

● Voxelized geometry?

● Some tentative solutions:
● Kill low-energy, stuck tracks
● Play with geometrical optimizations (voxels)
● None of them worked

● Fallback solution: single, homogeneous, 2m x 2m detector layer. 
● Use MC truth for impact point
● Position resolution: 0.3 cm



  

Simulation scenario
● Flux parameters:

● E
k
 ∈ [0.7, 130] GeV

● θ ∈ [0, 80] deg
● φ ∈ [-90, 90] deg

● Generation surface:
● z = 5 m
● x ∈ [-3, 65] m
● y ∈ [-10, 10] m
● Area: 1360 m2

● Full coverage of the detector-silo 
acceptance

● Acceptance check
● ~ 1012 generated
● 1.2 x 109 simulated

● Computation:
● CPU time: ~ (1.5 days * 300 cores)
● Size of output: ~ 330 GB 



  

U and air samples

● (10 cm)3 U:
(0, 0.2, 1.5) m (center)
(0.5, -0.2, 1) m (bottom-far)

● (5 cm)3 U:
(0, -0.15, 2) m (center)
(-1, -0.15, 3.5) m (top-near)

● (2 cm)3 U:
(0, 1, 2.6) m (lateral)
(0, -0.2, 2.3) m (center)
(-0.8, -0.8, 2.5) (lateral-near)

● (10 cm)3 air:
(0, -0.2, 1.3) m (center-bottom)



  

The autobackground method

● Signal is computed as the difference of two back-
projected maps:

S = (map without U)-(map with U)

● In real-life there is no “reference silo” without U to be 
used to measure the background map (i.e. without U)

● But much of the silo volume does not contain U 
(assumption)

● Idea: use the “silo with U” itself to estimate the 
background, exploiting the cylindrical symmetry of 
scenario #2
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Recipe: mirror the map about the y=0 
axis and use it as background map
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● Works only for symmetric geometries and off-axis 
samples

● “Mirrored” samples will be invisible
● Inverse images from low-density regions may be 

misinterpreted as direct images from high-density 
regions

● No need to simulate an empty silo, i.e. 
background

Incident muons

Silo



  

Data analysis

● Impact point and direction:
– Retrieve true impact points on front layer and on an eventual back layer 50 

cm apart (MC truth)

– Apply a gaussian smearing with σ = 0.3 cm

– Reconstruct the smeared impact direction

● Build back-projection maps
– Bin size: (7x7) cm2

● Compute signal and S/N maps (see next slide)
● Estimate DAQ time

– Integrate the flux over Ek, θ, φ and divide by the area of the generation 
surface to obtain (generated particles)/sec

● No data quality cut
– Efficiency = 1



  

S/N estimation

● In difference maps, signal is computed as the 
difference between two independent Poisson 
variables → Skellam distribution

● σ2 = μ1 + μ2

● S/N = (N1 – N2)/sqrt(μ1 + μ2)

● S/N ≈ (N1 – N2)/sqrt(N1 + N2)



  

Simulation results
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5 cm U

The 5 cm U cube is clearly 
visible with S/N = 6
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2 cm U

The 2 cm U cube is not visible
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The 10 cm U cube is clearly 
visible with S/N = 6

10 cm U

10 cm air

5 cm U

2 cm U

Smaller cubes and the air gap 
are not visible
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The 2 cm U cube placed off-axis 
is not visible...

2 cm U
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...even with optimized bin size 
(2x2 cm2)

2 cm U

The big sample is still clearly 
visible but clustering would be 
needed to clearly identify it
(max S/N of single bin ~ 4)
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10 cm U

The 10 cm U cube is not visible

The position of the two blurs at 
Z ~ 1.75 m is consistent with 
the predicted position on the 
X=50 layer of the shadow of 
the 10 cm U sample at X=0 



  

S/N vs acquisition time

● For the 10 cm U sample @ X=0 
and 5 cm U @ silo border

● Manual clustering
● Signal is divided many bins

● For 10 cm U case: the 
probability of obtaining no 
fluctuation at Nσ level or more 
over ~ 1430 bins (3.5m x 4m 
with (7x14) cm2 pitch) is:

N=3:         2%
N=3.5:    52%
N=4:       91%
N=5:       99.92%
N=6:       99.9997%
● Computed in the large μ approx. of 

Skellam distribution, where 
μ = μ

1
 = μ

2
 



  

Analysis of Multiple Scattering

● Turn off MSc in 
concrete
● But not in U

● (2 cm)3 and (10 cm)3 
samples @ center of 
silo

● (10 cm)3, off-axis 
sample @ X=80 cm

● ~ 4x1011 generated 
events

● Very clear signal
● MSc seems the limiting 

factor



  

Summary

● Feasibility study for U detection with muon absorption tomography 
technique

● Monte Carlo simulation: geometry, muon flux, detector
● Data analysis: backprojection, autobackgrond, S/N, DAQ time
● Detection capability strongly depends on the position of the sample

– Nevertheless the 2 cm sample seems out of reach (MSc)

● Air bubbles seem to be not a problem (at this stage)
– Results may vary when enlarging or changing the position

– Density fluctuations may not be an issue (to be further investigated)

● S/N vs. time estimate
– Need ~ 1 month to reliably detect a 10 cm U sample at center of silo

– May (Will) vary with varying size and position



  

Outlook
● Towards a more realistic MC scenario:

– Non-uniform concrete density

– Macroscopic debris (steel rods, clothes etc.)

– Neighbouring buildings

– Realistic detector

● Analysis:
– Event reconstruction

– Automated scanning (X tomography, bin size)

– Clustering algorithm
● Improved S/N computation
● Signal finding

● Checks:
– Dependence on assumed flux

● Acquisition time estimation
● S/N

– S/N vs. time for most probable high-density debris
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