Astrophysics with Gravitational Wave Transients

Laura Cadonati U. of Massachusetts Amherst

Roma - July 14, 2014

Outline

- 1. Gravitational Wave Bursts: how we look for them and the challenge of glitch hunting
- 2. "Burst First": Binary Black Hole Coalescences
- 3. Post-Merger Oscillations

LIGO-G1400753

Gravitational Wave Bursts: how we look for them and the Challenge of Glitch Hunting

Searches for GW Transient Sources

Compact Binary Coalescence (CBC) Known waveform \Rightarrow Matched filtering

Templates for a range of component masses (spin affects waveforms too)

Generic GW Burst (< ~1 sec duration) Arbitrary waveform \Rightarrow Excess power

Require coherent signals in multiple detectors, using direction-dependent antenna response

Burst Search Strategy: Excess Power

Sensitive to any signal with duration up to ~1 s.

Do not use (high accuracy) templates, can be educated by robust features in astrophysics models.

All-sky, all-time search for transient increase in power in time-frequency maps, minimal assumptions:

- 1. **Duration**: 1 to 100 ms (characteristic time scale for stellar mass objects)
- 2. **Frequency**: 60 to 2,000 Hz (determined by detector's sensitivity)
- 3. Coherence in multiple detectors, consistent with antenna pattern ==> waveform, sky location

Time-frequency maps options: Fourier, wavelets, sine-Gaussians.... Multiple time/frequency resolutions

Coherent WaveBurst (CWB)

Coherent statistics, likelihood maximized over waveform, position. Can impose model-dependent constraints.

Search Sensitivity for Transients: Initial LIGO/Virgo

GW energy in short pulses from the galactic center,

detectable with 50% probability.

Function of frequency and waveform.

Distance scaling: $E_{GW} \propto D^2$

(so, need $\sim 3 \times 10^6$ more E_{GW} for a signal from the Virgo Cluster to be detectable)

E.G. sensitive to galactic supernovae: Core Collapse Supernovae numerical simulations: E_{GW} up to 10^{-7} M_oc² Analytical calculations for extreme CCSN models: E_{GW} up to 10^{-2} M_oc²

Challenge: False Alarms from Noise Transients

- Data from 2009-2010 run
- η = coherent network amplitude
- $\rho_c \sim \text{sqrt}(2N) \eta$
- N= number of detectors

The LIGO-Virgo burst group is working to improve search algorithms and coherent cuts (Coherent WaveBurst 2G) But to address the problem at the root: detector characterization

Detector Characterization in aLIGO

Instrumental performance

Detector characterization

GW search data quality

Astrophysical

searches

Instrument scientists Subsystem characterization
Investigate features in aux channels and coupling with h(t)
Assist with instrumental improvement

GW strain channel characterization • Identify the DQ issues that most effect the searches and veto them or ideally help fix them

Total auxiliary channels:

• ~10,000 in iLIGO

• ~170,000 in aLIGO!

J. McIver 2014

Example: Propagation of Noise Transients in Active Seismic Isolation Stages

Results: transient motion is mostly reduced, except amplified at ~10Hz. Investigating if this will upconvert to higher frequencies, but is limiting at lower frequencies.

J. McIver 2014

LIGO-G1400753

University of Rome, La Sapienza - July 14, 2014

Semi-modeled analysis: Black Hole Binary Systems

Stellar Mass Binary Black Holes (10-100 M☉)

As mass increases, frequency decreases, fewer waveform cycles in band Excess Power approach becomes competitive with matched filtering - but more robust (relies less on templates).

Dedicated search with elliptical polarization constraints.

Stellar Mass Binary Black Holes (10-100 M☉)

Mohapatra et al., PRD 90, 022001 (2014)

(a) IMR-templates and Coherent WaveBurst.

(a) IMR-templates and Coherent WaveBurst.

$$\chi_s = \frac{m_1 \chi_1 + m_2 \chi_2}{m_1 + m_2}$$

Sensitive volume for matched filter vs burst searches, compared at FAR of 3 events/year

LIGO-G1400753

Intermediate Mass Binary Black Holes (100-1000 M☉) Projected Performance of Coherent WaveBurst 2G

Identification of BBH Merger Phenomenology Through Principal Component Analysis

Clark et al., arXiv:1406.5426

a.k.a. BHextractor: black hole evidence-extractor

- Logue, J. et al. 2012: Bayesian model selection technique (SMEE: Supernova Model Evidence Extractor) to identify supernova core-collapse mechanism from generic features in GW signal
- Can we do something similar with BBH signals?
 - **Rapid** identification of BBH GW phenomenology (spin, no spin, precession, ...) e.g. distinguish between detected signals from spinning/non-spinning/precessing systems
 - Waveform reconstruction
- Preliminary proof-of-concept to distinguish BBH signal morphologies with SMEE-like techniques
- Could extend to SN vs. BBH, difficult-to-model GW signals with existing NR simulations (e.g., post-BNS merger bursts), detector characterization (common instrumental glitch morphology)...

Principal Component Analysis

- For a catalogue with N waveforms, each M samples long
- We arrange each waveform into columns of an MxN matrix

• With Singular Value Decomposition of **A**, we find the principal components, i.e. a basis from which any waveform in **A** can be reconstructed as:

$$h = \sum_{i=1}^{N} \beta_i u_i \approx \sum_{i=1}^{k} \beta_i u_i \text{ for } k < N$$

LIGO-G1400753

Bayesian Model Selection

$$h = \sum_{i=1}^{N} \beta_i u_i \approx \sum_{i=1}^{k} \beta_i u_i \text{ for } k < N$$

- The parameter estimation problem is now to find the posterior probability distribution of $\boldsymbol{\beta}$
- distribution of p • Bayesian model selection is performed by comparing relative posterior probabilities for different catalogues M₁, M₂ etc: $B_{1,2} = \frac{p(D|M_1)}{p(D|M_2)} = \frac{\int_{B_1} d\beta \ p(\beta|M_1)p(D|\beta, M_1)}{\int_{B_2} d\beta \ p(\beta|M_2)p(D|\beta, M_2)}$ •Bayes Factor' $\longrightarrow B_{1,2} = \frac{p(D|M_1)}{p(D|M_2)} = \frac{\int_{B_1} d\beta \ p(\beta|M_2)p(D|\beta, M_1)}{\int_{B_2} d\beta \ p(\beta|M_2)p(D|\beta, M_2)}$
- Here, M₁ and M₂ are the different waveform catalogues, containing different physics (these models can also be the ratio of the likelihood that the data contains a signal versus noise only)

LIGO-G1400753

The Experiment

- Categorize NR BBH signals according to phenomenology: non-spinning (Q), spinning (HR), spinning & precessing (RO3)
- Perform PCA on each catalog to form models
- Inject population of waveforms from each catalogue into Gaussian noise (aLIGO design spectrum)
- Perform Bayesian model selection
 and reconstruct waveforms
- Focus on distinguishing between catalogs

Name:	Q	HR	RO3
Mass ratio, q:	1-2.5	I-4	1.5-4
Spin, a:	0	0.0-0.9	0.4, 0.6
Tilt angle, Θ:	0	0	45
N waveforms:	13	15	20

Preliminary results here use optimal source location/orientation and assume total mass & waveform peak time is known. 250 Msol, SNR=50.

How Many Principal Components?

- Aim to use as few PCs as h = possible while remaining able to faithfully reconstruct signals: avoids over-fitting, reduces computational cost of evidence integrals
- Cumulative eigenvalue energy content:

$$E[k] = \frac{\sum_{i=1}^{k} D[i,i]}{\sum_{j=1}^{N} D[j,j]}$$

- D is the eigenvalue matrix
- Find k: E[k]>=0.9
- then k PCs represent 90% of the variance in the catalog

Q catalog: non-spinning 13 waveforms, 2 PCs

LIGO-G1400753

HR catalog: spinning 15 waveforms, 4 PCs

LIGO-G1400753

RO3 catalog: precessing 20 waveforms, 5 PCs

RO3-catalogue dominant principle components

LIGO-G1400753

Classification **HR injections**

- Recover with Q, HR, RO3
- log(Bayes factors)~relative probability between injected model and X

- Nested Sampling algorithm returns Bayesian evidence & samples from β-posterior PDF
- Reconstruct waveform from max-likelihood βs for each model
- Compute match for reconstructions and injected waveform:

$$\mathbf{match} = \sum_{i=1}^{L} \hat{h}_{\mathrm{inj}} \hat{h}_{\mathrm{rec}}$$

Best match generally occurs for preferred catalog

LIGO-G1400753

Status

- Tantalizing signs that a handful of NR simulations is sufficient to form principal components which allow discrimination of BBH phenomenology
- Preliminary Monte-Carlo studies are encouraging: model selection works with ~90% success rate, best reconstructions occur for the most probable catalogue
- Limited studies so far: only first 10 waveforms from each catalogue injected, fixed SNR=50. Results are encouraging.
- Currently scaling up this study to more waveforms/statistics, refine catalogue choices, experiment with analytic (EOB) waveforms

Semi-Modeled Analysis: Post-Merger Oscillations

Neutron Star Equation of State

- Relation between the density of matter and its pressure: how squeezable matter is.
 - water has a stiff EoS (can change the shape, but not the volume).
 - steam has a **soft** EoS (can change volume with a little pressure).
- For a neutron star, knowledge of the mass and radius would tell us the equation of state. The more mass the star has the more gravity squeezes it.
 For a given mass:
 - If the star has a large radius (~15 km), it was relatively successful in resisting gravity and thus has a very stiff equation of state.
 - If the star has a small radius (~ 8 km), it was not as successful in resisting gravity and it has a softer equation of state.

Post-Merger Oscillations

"Numerical Simulations of Gravitational Waves with Matter" (M.Shibata 2012)

- HMNS emits short (10-100ms) burst ~2-4 kHz. BH ringdown ~6-7 kHz.
- Determination of post-merger oscillation frequency constrains the Neutron Star's Equation of State (EoS): stars with a stiff EoS are less dense, have lower f_{peak}.
- SNR dependent on EOS, mass configuration, NR code, ... SNR~5 @ few 20 Mpc

An Example of Delayed Collapse (Shen EoS, stiff)

Clark et al. arXiv:1406.5444

An Example of Prompt Collapse (SFHo EoS, soft)

Clark et al. arXiv:1406.5444

LIGO-G1400753

Clark et al. arXiv:1406.5444

Detectability and Classification

$$\delta f_{\text{peak}} \equiv \left| f_{\text{peak}} - f'_{\text{peak}} \right|$$

Summary

- 1. Gravitational Wave Bursts: how we look for them and the challenge of glitch hunting
- 2. "Burst First": Binary Black Hole Coalescences
- 3. Post-Merger Oscillations

LIGO-G1400753