L'esperimento FAMU

(Fisica Atomi MUonici)

A. Menegolli, a nome del gruppo FAMU-Pavia CdS 15 luglio 2014

Contenuti

- Motivazioni ed obiettivi scientifici.
- Metodologia e apparato di rivelazione.
- Attività del gruppo FAMU-PV.
- Preventivi 2015.

Motivazioni: il puzzle del raggio del protone

Misura dello splitting iperfine (HFS) nello stato base dell'idrogeno muonico.

1

Il raggio Zemach del protone dal HFS del $(\mu^-p)_{1S}$

• Esperimento basato sul Lamb Shift nel μ -p al PSI (2010):

$$r_{ch} = 0.84089(39) \text{ fm}$$

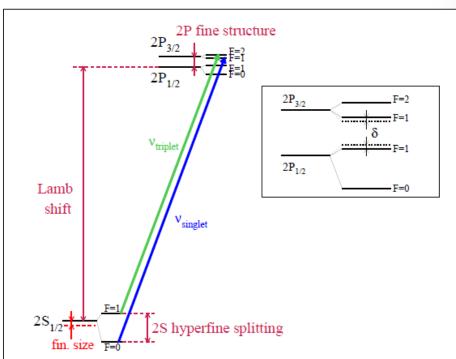
Discrepanza di 7σ da CODATA-2010:

$$r_{ch} = 0.87750(510) \text{ fm}$$

basato su scattering e-p e spettroscopia H.

• Differenza non spiegata tra i dati μ -p ed e-p.

Interazioni anomale μ-p?


Struttura del protone

Si considerano le distribuzioni di carica, $\rho_{\rm E}(r)$ e magnetica, $\rho_{\rm M}(r)$. Solo due dei loro momenti sono direttamente legati a quantità osservabili:

$$\begin{split} & r_{ch} \text{=} (\int \rho_{E} (r) \; r^{2} \; d^{3}r)^{1/2} \; \rightarrow \; \Delta E_{LS} \text{= 206.0669(25)} - 5.2275(10) \; r_{ch}^{2} \; \text{meV} \\ & R_{Z} \text{= } \int \left(\int \rho_{E} (r') \; \rho_{M} \, (r\text{-}r') \; d^{3}r' \right) r \; d^{3}r \; \rightarrow \end{split}$$

$$\Delta E^{HFS}_{2S} = 22.9843(30) - 0.1621(10) R_Z \text{ meV}$$

 $\Delta E^{HFS}_{1S} = 184.087X - 1.281Y R_z meV$ La teoria prevede $X \approx 15$, Y < 10.

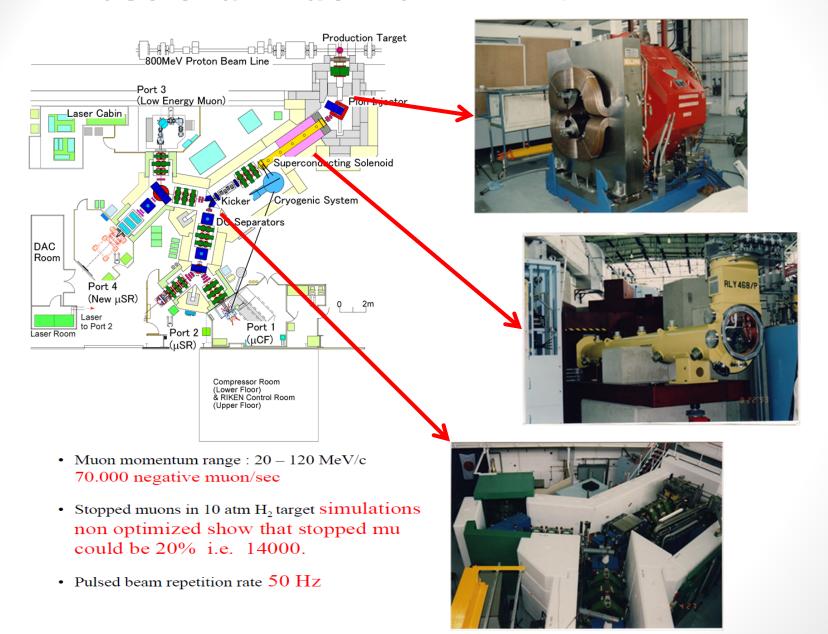
Misura di R_Z dallo HFS of μ^-p

	charge radius r _{ch}	Zemach radius R _z
e ⁻ -p scattering & spectroscopy	r _{ch} = 0.8775(51)	R_z =1.037(16) Dupays& al' 03 R_z =1.086(12) Friar&Sick'04 R_z =1.047(16) Volotka& al' 05 R_z =1.045(4) Distler& al' 11
μ ⁻ -p spectroscopy	r _{ch} =0.84089(39)	Either confirm or reject that e ⁻ p and μ ⁻ p differ

Recentemente: $R_z = 1.082(37)$ [PSI'12] from HFS of $(\mu^-p)_{2S}$

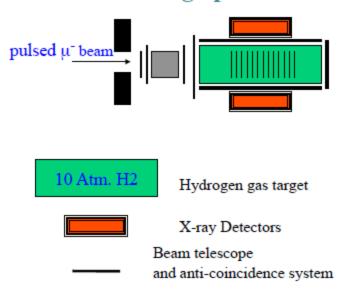
- Precisione insufficiente per risolvere il puzzle: serve un metodo alternativo: misura di ΔE^{HFS}_{1S}
- Importante test di QED: misura di ($\Delta E^{HFS}_{1S} 8$. ΔE^{HFS}_{2S}), dal momento che effetti di struttura del protone sono soppressi.
- Come si fa?

Metodologia

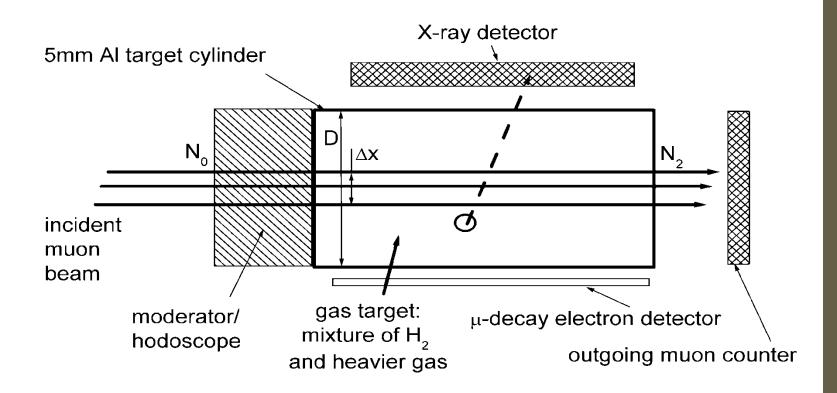

- L'atomo di μp assorbe una fotone da un laser IR alla lunghezza d'onda della risonanza $\lambda_0 = hc/\Delta E^{1S}_{HFS} \approx 6.8 \ \mu m$ della transizione da singoletto a tripletto (spin flip).
- Quando l'atomo viene de-eccitato collisionalmente allo stato 1S, viene accelerato di 0.12 eV (≈2/3 dell'energia di transizione iperfine).
- Questa sequenza di processi viene rivelata tramite i prodotti di reazioni la cui rate dipende dalla velocita' del μp .
- In particolare, viene osservato il trasferimento del μ dal protone a nuclei di un gas pesante appropriato, che abbia una dipendenza importante dell'energia dalla rate di trasferimento.
- Il trasferimento del μ e' identificato da raggi X caratteristici emessi durante la diseccitazione dell'atomo muonico piu pesante.
- λ_0 (da cui si ricava ΔE^{1S}_{HFS}) viene identificata dalla risposta massimale -> precisione prevista $\approx 10^{-4}$

La Collaborazione FAMU (2014)

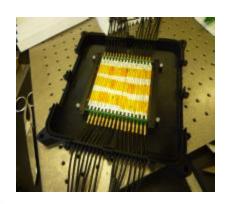
Coordinatore Nazionale: Andrea Vacchi (INFN Trieste)

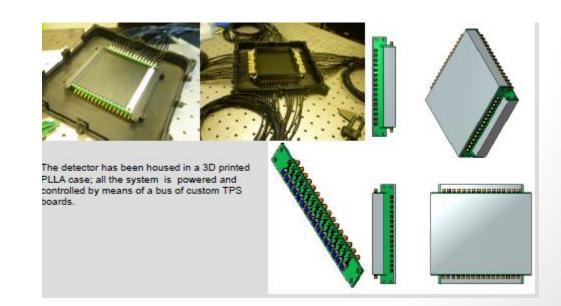

Sezione	Resp. locale	FTE ricercatori	FTE tecnologi/tecnici	FTE totali
Bologna	G. Baldazzi	2.5	0.3	2.8
Milano	R. Ramponi	0.1	0.0	0.1
Milano Bicocca	M. Bonesini	2.3	0.6	2.9
Roma III	L. Tortora	1.1	1.4	2.5
Trieste	A. Vacchi	4.1	0.4	4.5

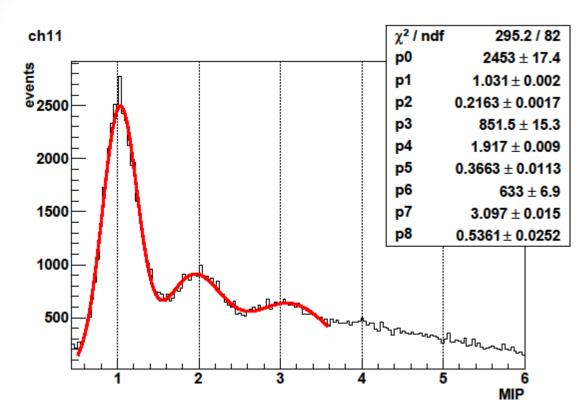
Il fascio di muoni al RIKEN-RAL


L'apparato di rivelazione

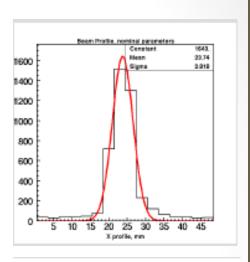
The experimental method requires an **intense low energy** pulsed muon Beam and an high power tunable pulsed laser


- μ stops the H₂ target (μ p) is formed with an initial energy > 1 eV in a statistical mixture of the two hyperfine states F=0 and F=1.
- At 10 atm the termalization is fast, the (μ⁻p)_{1S} will soon (100-200ns), be present in the singlet F=0 state with an average kinetic energy near to the thermal one


L'apparato di rivelazione


Monitor di fascio

- 2 piani x/y di fibre scintillanti BCF12 lette da SiPMT Advansid 3x3 mm² da 40 μm
- 32+32 canali letti da elettronica di front-end sviluppata per SuperB/TPS (alimentazione singola /shaper/discriminatore)
- Segnale analogico letto da QADC CAEN V792 + segnale discriminato (tempo) da TDC CAEN V1190
- Costruito e testato in < 4 mesi [aiuto essenziale da INFN PV: M. Rossella, M. Prata, R. Nardo']
- Meccanica stampata su stampante 3D a Pavia su CAD di R. Mazza





Testbeam alla BTF dei LNF

- Testbeam con fascio di e di bassa molteplicita (1-5 particelle/burst) e momento 490 MeV/c
- S/N ~10 and charge resolution for single MIP ~20%

Presa dati 5-10/5/2014 con partecipazione INFN-PV

Attività future

- Misura della rate di trasferimento di muoni da idrogeno muonico ad atomi pesanti: si varieranno la pressione, la temperatura e la concentrazione dei nuclei nella miscela di gas.
- Caratterizzazione e scelta del rivelatore X più idoneo e test run su fascio.
- Finalizzazione del sistema per il monitor dei muoni del fascio.
- Realizzazione del sistema laser.

Preventivi 2015: anagrafica

Nome	Ruolo	FTE	Note
A. Menegolli	Ricerc. Universitario	0.4	Responsabile locale
A. De Bari	Ricerc. Universitario	0.4	
R. Nardò	Tecnologo Universitario	0.2	
M. Rossella	Tecnologo INFN	0.2	
P. Vitulo	Ricerc. Universitario	0.1	s.j. all'approvazione della Call di CSN5

Attività 2015 del gruppo FAMU-PV

- R&D su cristalli + foto-rivelatori per spettroscopia X: CdTe, LuAG:Pr, rivelatori al Germanio. Lo scopo è trovare il miglior rivelatore in termini di risoluzione energetica e temporale, compatibilmente con il rapporto costo/superficie.
- Partecipazione a runs di test alla BTF e a RAL per finalizzazione dell'apparato di rivelazione. Analisi dei dati.
- Collaborazione alla realizzazione dei monitor di fascio, specialmente dal punto di vista della meccanica e dell'elettronica di lettura.
- Richieste ai servizi:
 - Servizio elettronico: 3 mesi uomo.
 - Officina meccanica: 2 mesi uomo.

Preventivi FAMU-PV 2015

Richieste 2015	
Missioni	20 K€
Consumi (elettronica per rivelatori al Germanio, CdTe e LuAG:Pr)	4 K€
Consumi (Stampante 3D e lavorazioni meccaniche)	3 K€
Trasporti	2 K€
Inventariabile (analizzatore MCA, TAC)	6 K€
Inventariabile (Digitalizzatore CAEN V1742)	7 K€
Inventariabile (Sorgente di calibrazione: 152Eu)	2 K€
Costr. apparati (Cristalli e PMT per test rivelazione raggi X)	12 K€
Costr. apparati (elettronica per lettura segnali rivelatori al Germanio, CdTe e LuAG:Pr)	10 K€
Manutenzioni	2 K€
Spese servizi (contributo officina)	2 K€
Totale	70 K€