

A PROPOSAL TO STUDY RADIATION HARDNESS OF CRITICAL MATERIALS IN THE SPES FRONT-END TARGET ION SOURCE (TIS) AT LNL

EXTENSION OF THE ACTIVITIES OF SPES_PV – INFN PV IN COLLABORATION WITH L.E.N.A. - UNIPV AND LABORATORIO DI SCIENZA E TECNOLOGIA DEI MATERIALI - UNIBS

Aldo Zenoni – CdS INFN PV 15-07-2014

INFN

Building design & study of beam transport to ALPI are completed

SPES Cyclotron

		2013 2014			Best Theratronic					
		II	III	I.	II	III			- 30 1101010	
	Final Assembly and Testing									
	Factory Commissioning						Accelerated Particle	H-		
	Disassembly and Shipping						Extracted Particle	Protons		
	Installation at LNL									
	Commissioning at LNL						Energy	35-70 Me	eV (variable)	
	and a		in a	P		A.	Current	> 700 uA	(variable)	
	E		T		A	-	Extraction System	By stripp beam ext	ing $ ightarrow$ simultaneous dual traction	
		÷			T		Injection System	Axial Inje Multicus	ection → External p Ion Source 15-20mA DC	
				Main Magnet	Bmax = 1,6 T Coil current = 127 kAt Power supply = 30 kW 4 sectors, deep valley					
	Main Dimensions Diameter = 4.5 m			mit			RF System	2 resonat Frequence Harmonie Dissipate DEE volta	tors cy= 58 MHz c mode=4 d Power=15 kW per cavit age=60-80 kV	ty
1	Height= 1.7 m Weight = 210 tons			1			Operational Vacuum	2 e -7 mb	bar	

The RIB production area

Target & Ion Source complex (TIS)

40 MeV protons 200 μA

7²³⁸UC_x coaxial disks

3 grafite dump disks

INFN

Target & Ion Source complex (TIS) Exotic beams for science

INFN

SPES

The SPES off-line Front end

(working since 2010 - evolution of ISOLDE FE6)

Ionization & transport measurements

The TIS simulations

The TIS simulations (MCNPX)

FLUKA versus MCNPX

A recent Rad-hard study in the SPES bunker

SPES Front-End: Technical Report Neutron and gamma damage study of critical SPES Front-End components

Raúl Vivanco [•]
May 8, 2014
Author Reviewed Approved Raúl Vinneo Alberto Andrighetto -
Alberto Monetti Fernando Sordo
NFN Istituto Nazionale di Fisica Nucleare
atori Nazionali di Legnaro

Labor

Pro/E CAD model of the SPES Front-End in MCNPX

Front-End room

Top cross section view

Front-End room

Side cross section view

Target and Chamber

Plastic joints

Insulators and chamber guides

TIS critical components modeled

Component	materials
Chamber structure	Aluminum AL6082T6
Chamber joints	TEFLON, EPDM
Viewport glass and joints	Silicon oxide based glass, VITON, EPDM
Insulators	Ceramic Alumina Al ₂ O ₃
Proton beam joints	EPOXY, VITON, EPDM
Chamber handling guides	TEFLON, TPE-SBR
Charged base insulators	PEEK
Pneumatic motors	(lack of information) virtual O-ring in EPDM
Electrical motors	(lack of information) joints in EPDM, insulators EPON-862, Lubrificant BiEster $C_6O_1H_{12}$
AC power wire jackets	Thermoplastic TPE-SBR
RIB wires	Thermoplastic TPE-SBR
Wire collector	Thermoplastic TPE-SBR
Optical fiber core	PMMA, Glass Epoxy 1 A2 and 1 B2
Optical fiber cladding	FEP (Fluorinate Ethylene Propylene)

Results of the Rad-hard TIS simulation - I

TEFLON and VITON cannot be used

15 days operation are foreseen

Component	Material	Dose absorbed [Gy/s]	Error [%]	Dose Limit [Gy]	Maximum op. days [d]
Viewport glass	Glass (SiO_2)	4.57E+00	7.91	1.00E+07	25.3
Viewport joint	TEFLON	3.53E + 00	9.08	1.00E + 05	0.33
Chamber O-Ring	Viton	2.12E-01	0.9	1.00E+04	> 0.55
Chamber Guide (left)	TEFLON	8.73E-02	0.28	1.00E + 05	13.3
Chamber Guide (right)	TEFLON	8.89E-02	0.31	1.00E+05	13.0
RIB tube Insulator	ALUMINA	4.33E-03	0.61	1.00E+07	26738.3
Proton tube Insulator	ALUMINA	2.46E-03	1.91	1.00E+07	47083.3
1st Proton tube O-Ring	VITON	7.30E-02	2.68	7 1.00E+04	1.59
2nd Proton tube O-Ring	EPOXY	2.12E-01	2.68	< 1.00E+07	< 546.3
1st Chamber base insulator	PEEK	4.76E-02	0.57	2.00E+07	4866.5
2nd Chamber base insulator	PEEK	4.28E-02	0.54	2.00E+07	5409.3
3rd Chamber base insulator	PEEK	2.06E-02	0.69	2.00E+07	11263.4

Radiation damage rate From MCNPX

Rad.resistance dose limit From existing literature Max operating days before failure

Results of the Rad-hard TIS simulation - II

Component	Material	Dose absorbed [Gy/s]	Error [%]	Dose Limit [Gy]	Maximum op. days [d]
Viewport joint	EPDM	2.49E+00	9.08	3.00E+07	139.7
Chamber O-Ring	EPDM	1.03E+00	1.02	3.00E+07	335.8
Chamber Guide (left)	TPE-SBR	2.44E-01	0.38	3.00E+06	142.4
Chamber Guide (right)	TPE-SBR	2.48E-01	0.41	3.00E+06	139.9
1st Proton tube O-Ring	EPDM	3.47E-01	3.01	3.00E+07	1001.3
2nd Proton tube O-Ring	EPDM	3.10E-01	2.79	3.00E+07	1120.6
1st Chamber base insulator	PEEK	4.68E-02	0.64	2.00E+07	4945.6
2nd Chamber base insulator	PEEK	4.19E-02	0.60	2.00E+07	5520.1
3rd Chamber base insulator	PEEK	2.04E-02	0.77	2.00E+07	11319.5
Electric Motor O-Ring	EPDM	1.67E-02	6.94	3.00E+07	20757.4
Electric Motor Insulator	DGEBF + CE	9.81E-03	5.77	2.00E+06	2360.3
Electric Motor Lubricant	BiEster	1.70E-02	4.41	2.00E+06	1363.0
Pneumatic Motor (1) O-Ring	EPDM	1.92E-02	9.68	3.00E + 07	18050.7
Pneumatic Motor (2) O-Ring	EPDM	2.92E-02	7.68	3.00E+07	11875.2
Optical Fibber Jacket	FEP	7.59E-02	8.17	?	-
Optical Fibber Core (1st Option)	PMMA	3.50E-01	1.51	?	-
Optical Fibber Core (2nd Option)	Epoxy 1A2	1.54E-01	0.88	1.00E+08	7531.2
Optical Fibber Core (3rd Option)	Epoxy 1B2	1.54E-01	0.91	1.00E+08	7529.3
Wire Jacket AC Power ³	TPE-SBR	4.27E-01	1.64	3.00E+06	81.3
Wire Jacket RIB 4	TPE-SBR	1.24E-02	15.93	3.00E+06	2804.0
Wire collector	TPE-SBR	-\		3.00E+06	-

PEEK, EPDM, KAPTON, TPE-SBR are used instead of weaker materials

Mechanical requirements are still accomplished?

To what extent are data from literature reliable?

CERN report (1982)

.....

CERN 82-10 Health and Safety Department 4 November 1982

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPILATION OF RADIATION DAMAGE TEST DATA

PART III: Materials used around high-energy accelerators

INDEX DES RÉSULTATS D'ESSAIS DE RADIORÉSISTANCE

IIIe PARTIE: Matériaux utilisés autour des accélérateurs de haute énergie

P. Beynel, P. Maier and H. Schönbacher

APPENDIX 5.4

General relative radiation effects: Hoses

These appreciations are taken from the references cited and can only serve as a general guideline. Atmospheric and other environmental conditions such as temperature and dose rate are not taken into consideration. See also Sections 2 and 3.

A. Plastics

Polyphenylene oxide (PPO)	
Polyolefins, glass reinforcement	
Polyethylene (PE) + SR	
Combination PE-PVC	A
Polyvinyl chloride (PVC) + SR*)	
Polyamide(Nylon)	ANNU BRING
Polytetrafluoroethylene (Teflon PTFE)	
Polysetraflaoroethylene (Teflon PTFE)***	

B. Elastomers

Gamma dese, Gy

10

SR = synthetic reinforcement. All results for 1 bar, except *) for 1 and for 15 bar and **) for 20 bar water bursting pressure.

Utility Nearly always unable Often satisfactory Moderate to severe Not recommended

10*

107

110

REFERENCES: 36

GENEVA 1982

CERN report (1982)

 \overline{a}

Table I

Characteristics of various radiation sources used for this data compilation

Radiation source	Irradiation position ¹⁰	Characteristics of radiation field	Irradiation modium	Irradiation temperature (°C)	Dose rate (Gy/h)	Dosinatry method	Items in adiated
ſ	Pes. 11	$5 \times 10^{10} n_{sb}/m^2 s$ $3 \times 10^{10} n_f (E > 1 MeV)/m^2 s$	Water	40-50	$2 imes 10^4$	Calorimeter ¹⁵ Activation detector ¹⁵	Thermosetting resins ²¹
7 MW ASTRA	Ebene 1 (E1)	$\begin{array}{l} 4 \times 10^{12} n_{eb} / m^2 s \\ 3 \times 10^{14} n_e (E > 1 MeV) / m^2 s \end{array}$	Air	32-45	2×10^{9}	Ionization chamber ¹¹	Cable-insulating materials ¹¹ : other organic materials
reactor	SNIF	$2 \times 10^{12} n_{eb}/m^2 n$ $5 \times 10^{12} n_{e}(E > 1 MeV)/m^2 n$	Ait	35-45	$\begin{array}{c} n:2\times 10^{9} \\ r:2\times 10^{2} \end{array}$	Activation detector Ionization chamber	Electronics components ¹⁰ , optical glasses ¹⁰
l	Core	$\begin{array}{l} 1 \times 10^{11}n_{\rm ps}/m^2s\\ 8 \times 10^{17}n_{\rm f}(E>1{\rm MeV})/m^2s \end{array}$	Water or N ₂ or He	50-100	$3 imes 10^{6}$	Activation detectors Calorimeter	Magnetic materials, copper wires ³⁰
Fiel clements ASTRA	Pes. 35	Gamma radiation field characteristic for reactor fuel elements (0.5-3 MzV)	Air	25-35	$\substack{1\times10^{*}\\1\times10^{2}}$	Ionization chamber ¹⁾	Insulating materials containing metal; hmax with metal connectors
^{ei} Co source	Various	Gamma rays 1.2 MeV	Air	a 25	1×10^4	Fricke dosimeter	Insulating materials containing metal: motors
ſ	ISR beam dump	Hadron case ade and secondary gamma rays. Primary proton energy $\approx 30~GeV$	Air	≈22	4	R.P.L and PDG glass dosimeters ¹⁰	Electronics components and items con- taining metal, up to 10 ³ Gy
CERN accelerators	SPS neutrino target area	Hadron cascade and secondary gamma rays. Primary proton energy $\approx 400~{\rm GeV}$	Air	≈ 23	3×10^{2}	RPL and glass dosimeters ¹¹⁰	Cable and mignet insulations; items containing metal. up to 5 × 10 ⁶ Gy
l	PS or SPS ring	Primarics (leases) and secondaries up to 30 GeV (PS) or 250 GeV and 400 GeV (SPS)	Air	≈ 22	1-10	RPL and glass dosirneter, ionization chambers ¹⁰	Cable and magnet insolution; paints; operational life-tests

a) Specified on each entry in the data compilation section.

REASONS TO PROPOSE A PROGRAM FOR RAD-HARD TESTS FOR SPES

- Radiation hardness of materials and components is a critical item for ISOL sources (SPES, REX-ISOLDE, SPIRAL2, EURISOL....)
- Data in the literature are somewhat abundant but often not recent
- New materials, products and suppliers should be tested
- Specific materials and products utilized in the assembly should be tested in spite of generic materials
- Existing data mainly refer to gamma ray damage
- Reliable tests should reproduce as close as possible real operating conditions
- Specific mechanical, electrical, optical requirements of materials and products should be tested against radiation damage
- Complex components ad electrical motors or electronic circuits should be tested.
- Interest for a systematic campaign of Rad-hard tests for ISOL sources and other applications has been expressed by ISOLDE (Cern), iThemba (South Africa), CNR (RFX – ITER).

INTERNATIONAL EXTENSION OF THE PROJECT

UNIVERSITÀ DEGLI STUDI DI BRESCIA - FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA MECCANICA E INDUSTRIALE Via Branze, 38 - 25123 BRESCIA Codice Fiscale 98007650173 - Parita IVA 0173710171

Brescia University, July 15th, 2014

Dear Colleague,

we would like to inform you that, in the framework of the SPES project at INFN LNL, we have the intention to start a working group devoted to the systematic experimental study of the radiation damage of critical materials to be utilized for the construction of the SPES production target and front end.

The radiation damage of materials has always been an important item for accelerator science and space science, as well as for nuclear engineering, and, for this reason, it has been intensively studied in the past. We consider, however, that it could be of scientific and technical interest to perform a new radiation damage study specifically devoted to ISOL application, for several reasons:

- · Radiation hardness of materials and components is a critical item for all ISOL sources;
- · Data in the literature are somewhat abundant but often non recent;
- New materials, products and suppliers should be tested;
- · Specific materials and products utilized in the assembly should be tested in spite of generic materials;
- · Existing data largely used for accelerator projects mainly refer to gamma ray damage;
- Reliable tests should reproduce as close as possible real operating conditions;
- Specific and not generic mechanical, electrical, optical requirements of materials and products should be tested against radiation damage effects;
- Complex components as electrical or pneumatic motors or electronic circuits should be tested.

This project is going to start in fall 2014, will be supported by INFN, in the context of the SPES initiative, and will be located at Sezione INFN at Pavia University. Partners of the project, until now, are the Laboratorio Energia Nucleare Applicata LENA of Pavia University, where a TRIGA Mark II nuclear reactor is available and will be used for the irradiation tests of materials and components and the Laboratory of Materials Science and Technology of the Brescia University, where the tests on the property modifications of irradiated materials and components will be performed.

We would like to ask you whether you consider interesting this project and worth to be pursued and, if it is the case, we will be grateful if you will contact the responsible, Prof. Aldo Zenoni Brescia University, for an exchange of ideas and for providing him with suggestions and very welcome contributions. This would be of invaluable importance in order to allow us to aim our research program and efforts at the best possible results.

Looking forward to hearing you soon.

Alberto Andrighetto, SPES project LNL alberto.andrighetto@lnl.infn.it

Richard Catherall: (ISOLDE tecnical coordinator) Yacine Kadi: (HIE- ISOLDE project coordinator) **Thierry Stora**: (CERN Medicins project coordinator) Lowry Conradie: (Ithemba Head Accelerator division) Abdelhakim SAID (Alto Coordinator) Samuel DAMOY (Spiral2 technical coordinator) Mats Lindroos (ESS Head of Accelerator Division) Vanni Antoni: (RFX Project Director: CNR - Padova) Giuseppe Gorini: (Gruppo Milano Bicocca)

PROPOSED PROGRAM OF COLLABORATION

INSTITUTIONS

- INFN SPES @ LNL
- Sezione INFN PV SPES_PV
- L.E.N.A. @ UniPv
- Fundamental and applied physics group @ UniBs
- Materials Science and Technology Laboratory @ UniBs

RESEARCH PROGRAM

- Compilation of materials and products to be rad-hard tested with definitions of the actual mechanical, electrical, optical, operational requirements to be granted
- Simulation of the radiation fields and cumulated dose expected on the critical TIS components in foreseen operational conditions
- Irradiation campaigns at L.E.N.A. on sample materials and products. Radiation fields as close as possible to the expected ones (neutrons vs gammas). Systematics on adsorbed dose levels.
- Test of physical and operational properties of materials for different levels of irradiated dose
- Analysis of the relation between physical properties changes and structural modifications due to radiation damage in materials (polymers)
- One or two year research program

PERSONALE E FINANZIAMENTO DELLE ATTIVITA' PER IL 2014-2015

W.P. RDS_SPES (Radiation Damage Study for SPES) NELLA SIGLA SPES_PV

PERSONALE PARTECIPANTE E FTE									
Gruppo di Brescia Sezione di Pavia									
Aldo Zenoni PO	60%								
Antonietta Donzella TD	50%								
Fabio Bignotti PA 30% Laboratorio Scienza e Tecnologia dei Materiali Uni									
L.E.N.A UniPV									
Daniele Alloni	30%								
Michele Prata	30%								
Andrea Salvini	20%								
Giovanni Magrotti 20% totale 2,4 FTE									
SPES LNL									
Una borsa di studio biennale INFN per neolaureati									

FINANZIAMENTI RISERVATI SU PROGETTO SPECIALE SPES LNL								
Borsa di studio	<mark>36</mark> k€							
Missioni interne e estero	15 k€							
Materiale consumo laboratorio	5 k€ (su fondi PV)							
Materiale inventariabile	2 k€							
Acquisto servizi	da stabilire con LNL SPES							

SPARE

Target & Heater

7 UCx coaxial disks:

thickness: 1.3 mm diameter: 40 mm

3 graphite dump disks

Tantalum tube: external diameter: 50 mm thickness: 0.35 mm length: 200 mm

Ionizer & transfer tube: thickness: 1 mm height: 34 mm Inner diameter: 3 mm Aluminum target unit

SPES Target:

Optimized for 8 kW power dissipation (E= 40 MeV, I= 200 µA)

<u>SPES Heater,</u> <u>Ionizer &</u> Chamber

name	composition	
EPDM	Etylene-Propylene Diene Monomer	rubber
PEEK	Polyether ether ketone	organic thermoplastic polymer
PMMA	polymethilacrilate	Plexiglass, lucite
SBR	Styrene-butadiene	rubber
TPE	Thermoplastic elastomer	rubber
VITON	Fluoropolymer elastomer	rubber
TEFLON	Politetrafluoretene	
KAPTON	poly-oxydiphenylene-pyromellitimide	

Commercial name	Composition	Notes	References	Density					
VITON A-410C	VF2 (34%wt) HFP (66%wt)	-		1.810					
TEFLON	$C_{2}F_{4}$	-		2.200					
AL-6082 T6	Mn (0.700%wt) Fe (0.250%wt) Mg (0.900%wt) Si (1.000%wt) Cu (0.050%wt) Ti (0.050%wt) Ti (0.050%wt) Cr (0.125%wt) Al (96.825%wt).		8.9	2.698		Material the s	s employe simulation	d for s	
Ti-TA6V	A1 (6.00%wt) V (4.00%wt) C (0.08%wt) Fe (0.30%wt) O (0.20%wt) N (0.07%wt) Ti (89.35%wt).	-	(10)	4.430					
PEEK	O (6 mol) C (19 mol) H (12 mol).	PEEK-1000	(CI) (C2)	1.310	LUBRICANT	C (24 mol) H (48 mol)	Bi-Ester	1221	1.209
SS316L	Fe (b6.037%wt) Cr (17.250%wt) Ni (12.000%wt) Mo (2.500%wt) C (0.030%wt) Mn (1.410%wt) Si (0.630%wt) P (0.031%wt) S (0.012%wt).	-	(13) (13)	8.000	РММА	O(4 mol) $(C_5H_8O_2)_n$	Polymethyl Methacrylate - Plastic Optical Fiber core		1.180
EPOXY	Epoxy Resin (71,94%mol) and Amine (28.06%mol)	Epoxy Resin: $C_{21}H_{24}O_4$ Amine: $C_{11}H_{18}N_4$	Epoxy Resin: 13. Amine: 16	1.159		C ₂ F ₄ (95 %mol)	Fluorinated ethylene propylene		
EPDM	C (21 mol) H (34 mol)	-	117	0.868	FPE	C ₃ F ₆ (5 %mol) C (71 301 %wt)	- Optical Fibber Jacket	[22]	2.150
TPE - SBS	C_8H_8 (2 mol) C_4H_6 (1 mol) C_4H_6 (1 mol)	SBS	-	0.819	EPOXY	H (13.542 %wt) O (7.530 %wt)	Optical Fibber matrix	20	1.159
TPE - SBR	C ₄ H ₆ (77 %wt)	SBR	ā	0.956	1A - GlassFibber	Al ₂ O ₃ (62.5 %mol)	YAG Glass Fibber	1271	4.492
	C (0.030 %wt) Si (0.750 %wt)			2	1B - GlassFibber	Al ₂ O ₃ (60.0 %mol) SiO ₂ (40.0 %mol)	YAG Glass Fibber	20	3.470
SS304L	Mn (2.000 %wt) P (0.045 %wt)	1	63	7.857	Fibber Core 1A2	EPOXY (34 %wt) Fibber 14 (66 %wt)	Optical Fibber core mixture	[27]	2.272
	S (0.030 %wt) Cr (19.000 %wt)				Fibber Core 1B2	EPOXY (34 %wt) Fibber 1B (66 %wt)	Optical Fibber core mixture 1B2	27	2.069
	Ni (10.000 %wt) N (0.100 %wt)					Table 4: Summary of m	aterials employed in the simula	tions.	
Bakelite	C (95 mol) H (88 mol) O (12 mol)		(ED)	1.360					
DGEBF+CE	C (72.972 %wt) H (5.851 %wt) O (17.995 %wt) N (3.182 %wt)	DGEBF: 70%wt CE: 30%wt	<u>20</u>	1.220 Same as 862 [21]	EPON				