

Status and near-term Prospects of the ATLAS experiment

Sandro Palestini CERN and ATLAS Collaboration

The landscape of Flavour Physics towards the high intensity era Pisa, 9-10 December 2014

- Recent results and from Run-I
- Detector upgrades for Run-II
 - IBL
 - B-physics triggers
 - Muon trigger and measurement in the end-cap
- A physics case for Run-II

Search for a hidden-beauty counterpart of the X(3872) in the mass ranges 10.05–10.31 GeV and 10.40–11.00 GeV,

in the channel $X_b \rightarrow \Upsilon(1S)\pi\pi \rightarrow \mu\mu\pi\pi$. (arXiv:1410.4409)

This result is currently the tightest <u>limit</u> for m(X_h) > 10.1 GeV.

$\psi(2S) \rightarrow J/\psi \pi\pi$ cross section at 7 TeV

Prompt and non-prompt production differential cross-sections for $\psi(2S)$ for 10 < p_T < 100 GeV and |y| < 2.0 (arXiv:1407:5532 and JHEP)

CERN

Observation of excited B_c state

 $B_c^* → B_c \pi \pi → J/\psi \pi \pi \pi$, 5 and 19 fb⁻¹ (2011 and 2012 data), m = 6842 ± 4 ± 5 MeV, consistent with expectations for $B_c(2S)$ (PRL 113, 212004 (2014))

Z+J/ ψ associated production

Following W+J/ ψ study with 5 fb-1. Select Z(\rightarrow II)+J/ ψ (\rightarrow µµ) (trigger on lepton from Z, muon or electron).

Study the distribution in Z, J/ ψ masses and J/ ψ pseudo decay-time to separate prompt and non- prompt contributions.

The signal is the sum of *real* associated production, and of *double-parton* interaction - relative contributions hinted by azimuthal angle correlation

Non-prompt Prompt 35 70 Events / 0.63 Events / 0.63 ATLAS Preliminary ATLAS Preliminary √s=8 TeV, 20.3 fb⁻¹ √s=8 TeV, 20.3 fb⁻¹ 30 60 $pp \rightarrow prompt J/\psi + Z$ $pp \rightarrow non-prompt J/\psi + Z$ Data Data 50 25 Double Parton Scattering Double Parton Scattering Pileup Pileup 20 40 Pileup and DPS Uncertainty Pileup and DPS Uncertainty 15 30 20 10 5 10 0.5 0.5 2 2.5 3 'n 15 2 2.5 3 .5 $\Delta \phi(Z,J/\psi)$ $\Delta \phi(Z, J/\psi)$ DPS dominates Same pattern is observed in the azimuthal opening angle as with the W this bin CERN S. Palestini - Pisa 2014

DPS estimated from W+jet-jet study by ATLAS.

8

Detector upgrades for Run-II

Calorimeter System

/

Detector upgrade:

new innermost layer of Pixel detector (IBL)

Small radius (32-38 mm; current B-layer at 50.5 mm), small material budget

 4^{th} pixel layer => more robust track reconstruction, better impact parameter d_0 and z_0 resolution

Better θ and ϕ resolution at low $p_T \sim 1 \text{ GeV}$

This detector has been installed in the current shut-down of LHC

Muon triggers for B-physics in Run-I

Run-1: Low-p_T triggers based on two-muons selection:

- At Level-1: hardware-based fast selection of muons with pT of 4 or 6 GeV
- Possible to ask one or both muons in the barrel (better momentum resolution and lower trigger rate)
- "4 Gev × 4 GeV" trigger prescaled at beginning of LHC fill in 2012 data (minor prescaling in "4 GeV × 6 GeV" and in "4 Gev × 4 GeV × 1-Barrel")

(at 7×10^{33} cm⁻²s⁻¹, rates of 11 kHz (3 kHz) for "4 Gev × 4 GeV" ("6 Gev × 6 GeV), cfr. total ATLAS Level-1 of 75 kHz)

B-phys. triggers in Run-I

 At HLT an *offline-like* reconstruction and selection is performed, first reading a fraction of the inner detector (the *Regions-of-Interest*) defined by the Level-1 trigger, then reading the full detector

In 2012, the stream of J/ ψ based triggers was handled with delayed processing, for computing time limitations.

Muon triggers for Run-II:

- Level-1 topological trigger
- Opening angle between triggering muons will be available at Level-1 trigger
- Angle information can be combined with momentum threshold information (p_T of 4, 6, 10 GeV), for an estimate of the invariant mass of the pair.

Optimization studies are being performed on reference channels, including: $B_s \rightarrow J/\psi \phi$, $B^0 \rightarrow \mu \mu$, $B_d \rightarrow K^* \mu \mu$, Υ studies

We have indications of the effectiveness of combined angle and invariant mass selection for $B^0 \to \mu\mu$

Muon triggers for Run-II: Level-2 FTK

Fast tracking trigger:

- HW based track finder in the Inner Detector silicon layers at "offline precision"
- Provides tracks already before the L2 trigger (first SW based trigger layer)
- Two-step processing: hit pattern matching & subsequent linear fitting in FPGAs

It will make tracks from the entire Inner Detector available in the early stage of the High Level Trigger. Gradually implemented during Run-2.

So far, limited studies on B-physics applications, but *b*-tagging has been considered.

More on FTK in the discussion on long-term developments (A.Cerri)

Other detector improvements for Run-II

- Quality of muon Level-1 triggers in the end-cap improved by including Thin-Gap-Chambers in the inner station of the muon Endcap (background triggers will be reduced).
- Muon momentum resolution (HLT and offline) improved significantly in the 1.0<|eta|<1.4 transition region (third muon station completed)
- Acceptance of muon trigger being optimized filling some % not currently covered in the Barrel

(eg. near the support structure of the ATLAS Barrel and near the safety access ways to the Barrel muon spectrometer).

The New Small Wheel

 As of 2019, a new, high resolution inners station of the muon Endcap (1.4<|eta|<2.5) will be installed. The detector technologies include Thin-Gap-Chambers and Micromegas chambers

Case study for Run-II physics reach: $B_s \rightarrow J/\psi \phi$ with IBL upgrade

$B_s \! \rightarrow \! J/\psi \; \varphi \;$ with IBL

The sensitivity to the CP violating phases is driven by the measurement of the fast oscillation of the tagged Bs decay; it therefore depends on:

- tagging power: $\epsilon_{tag} \times (1 2 \times \delta_{err})^2$ (efficiency and fraction of wrong tags)
- *decay time resolution*: the amplitude of a fast oscillation is reduced if the time resolution σ is not adequate:

$$e^{-i\omega x} \rightarrow \int e^{-i\omega x'} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-x')^2/2\sigma^2} dx' \cong e^{-i\omega x} e^{-\sigma^2 \omega^2/2}$$

$B_s \rightarrow J/\psi \phi$ with IBL

- For B_s oscillations, $\omega = \Delta m_s = 18 \text{ ps}^{-1}$
- Currently $\sigma \approx 0.10$ ps in ATLAS (and ≈ 0.04 ps in LHCb)
- Therefore in ATLAS $e^{-\sigma^2 \omega^2/2} \approx 0.20$ (≈ 0.77 in LHCb)
- An improvement in σ is very valuable in the measurement of ϕ_{s} .

Projected improvement in σ_{τ} with the IBL:

$B_s \rightarrow J/\psi \phi$ with IBL

The reduction in σ_{τ} by $\approx 25\%$ can improve the sensitivity by a factor approaching 2, but the advantage might be partially offset by a reduced yield of events because of tighter p_{T} selection at trigger level.

From a study of last year (ATL-PHYS-PUB-2013-010):

	2011*)	2012	2015-17		2019-21
Detector	current	current	IBL		IBL
Average interactions per BX $<\!\mu>$	6-12	21	60		60
Luminosity, fb^{-1}	4.9	20	100		250
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6-6	11 - 11	11 - 11
Signal events per fb ⁻¹	4 400	4 320	3 280	460	460
Signal events	22 000	86 400	327 900	45 500	114 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064

2011: PR D 90, 052007 (2014), systematic error much smaller 2012: from toy MC, extrapolated from 2011, not from real data and improved analysis 2015-17 and 2010-21: effects of new topological trigger and FTK not included.

Conclusions

- The detector upgrade and the physics agenda of ATLAS for Run2 have not neglected B-physics.
- The main improvements include expanded functionality of the trigger (Level-1 in particular), and the additional inner layer of the Pixel detector, which will increase vertexing capabilities.
- A specific case has been illustrated, but we expect significant contribution also in other areas of B-physics. -

