

The landscape of Flavour Physics towards the high intensity era

KAON EXPERIMENTS

Augusto Ceccucci/CERN Pisa, December 9, 2014

TATSUYA NAKADA'S DESPERATE FLAVOUR QUESTIONS

- My really desperate questions concerning the flavour are:
- Why do we have "three" families?
- Why are the two mass matrices "as they are"?
- I am not sure whether I will see the solution before
 I die (SUSY may answer many important questions, but not those).

Tatsuya Nakada, Experimental Summary, Rencontres du Vietnam, Quy Nhon (Vietnam), July 27 - August 2, 2014

KAON LEPTONIC DECAYS

$$\Gamma(K \to \mu \bar{\nu}_{\mu}(\gamma)) = \frac{G_{\mu}^2 |V_{us}|^2}{8\pi} f_K^2 m_K m_{\mu}^2 \left(1 - \frac{m_{\mu}^2}{m_K^2}\right)^2 \left[1 + \frac{\alpha}{\pi} C_K\right]$$

$$G_{\mu} = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$$

 $m_{\mu} = 105.658357 \text{ MeV}$
 $m_{\pi} = 139.57018(35) \text{ MeV}$
 $m_{K} = 493.677(13) \text{ MeV}$

Short-distance EW correction

V_{us} from semileptonic decays

$$\begin{split} \Gamma(K_{\ell^{3}(\gamma)}) &= \frac{C_{K}^{2}G_{F}^{2}m_{K}^{5}}{192\pi^{3}} S_{\text{EW}} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} \\ & \times I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{K\ell}^{\text{EM}}\right) \\ \text{with } K &\in \{K^{+}, K^{0}\}; \ \ell \in \{e, \mu\}, \text{ and:} \\ C_{K}^{2} & 1/2 \text{ for } K^{+}, 1 \text{ for } K^{0} \\ S_{\text{EW}} & \text{Universal SD EW correction (1.0232)} \end{split}$$

Input from Experiment		Input from Theory	
$\Gamma(K_{\iota^{3}(\gamma)})$	Rates with well determined radiative corrections	f ^{K0π–} (0)	Hadroni matrix element (form factor) at zero momentum transfer ($r = 0$)
	Branching Ratios	$\Delta_{\mathcal{K}}^{\mathrm{SU(2)}}$	Form factor correction for SU(2) breaking
	•Lifetimes		
$ _{\kappa_{\ell}}(\{\lambda\}_{\kappa_{\ell}})$	Integral of form factor over phase space: parameterizes evolution in <i>t</i>	$\Delta_{{\it K}}{}^{{\sf E}{\sf M}}$	Long distance EM effects
	•K _{e3} : Only λ_{+} (or λ_{+} ', λ_{+} ")		
	•K _{$\mu 3$} : Need λ_{+} and λ_{0}		

Evolution of Experimental Input...

"V_{us} Revolution" with experimental input changing ~ 5% in some cases..... Input from many experiments: BNL865, KTeV, ISTRA+, KLOE, NA48, NA48/2

...and of the theoretical one: $f_+(0)$

The LQCD calculations are Improving, for instance they go beyond "quenched" approximations ($N_f = 2$)

The Cabibbo angle can be precisely determined (~0.4%)! Unitarity test of CKM the first row (PDG 2014):

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999 \pm 0.0006$

 V_{us} = 0.2253 ± 0.0008

V_US AND THE LATTICE

Experiment (nuclear and particle physics) and lattice QCD

KLOE-2 - LNF

Expect significant progress on leptonic and semileptonic decays

Lepton Universality in K $R_{K} = K_{e2}/K_{\mu 2}$

SM

$$= \frac{\Gamma(\mathbf{K}^{\pm} \to \mathbf{e}^{\pm} \nu)}{\Gamma(\mathbf{K}^{\pm} \to \mu^{\pm} \nu)} = \frac{\mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mu}^{2}} \cdot \left(\frac{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta \mathbf{R}_{\mathbf{K}}^{\text{rad.corr.}}\right)$$

$R_{\kappa}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

Cirigliano & Rosell PRL 99 (2007) 231801

e.g. Masiero, Paradisi Petronzio PRD 74 (2006) 011701, JHEP 0811 (2008) 042

$$\mathbf{R}_{K}^{\text{LFV}} \approx \mathbf{R}_{K}^{\text{SM}} \left[1 + \left(\frac{\mathbf{m}_{K}^{4}}{\mathbf{M}_{H^{\pm}}^{4}} \right) \left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{e}^{2}} \right) | \mathbf{\Delta}_{13} |^{2} \text{tan}^{6} \beta \right]$$

Example: (Δ_{13} =5×10⁻⁴, tanβ=40, M_H=500 GeV/c²) R_K^{MSSM} = R_KSM(1+0.013).

A Standard Model view of CPViolation in Kaons Neutral Kaon Mixing (ππ, semi-leptonic)

$$|\varepsilon| = \frac{G_F^2 f_K^2 m_K m_W^2}{12\sqrt{2}\pi^2 \Delta m_K} \hat{B}_K \{\eta_1 S(x_c) \operatorname{Im}(V_{cs} V_{cd}^*)^2 + \eta_2 S(x_t) \operatorname{Im}(V_{ts} V_{td}^*)^2 + 2\eta_3 S(x_c, x_t) \operatorname{Im}(V_{cs} V_{cd}^* V_{ts} V_{td}^*)\}$$

 $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$

• Neutral Kaon Decays into $\pi\pi$

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} \propto \operatorname{Im}(V_{td}V_{ts}^*) \left[P^{1/2} - P^{3/2}\right] e^{i(\phi_{\varepsilon'} - \varphi_{\varepsilon})}$$

PDG Average

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} = (1.68 \pm 0.14) \times 10^{-3}$$

LATTICE QCD: BAG PARAMETER

Precision is becoming remarkable and requires to take into account corrections to $\epsilon_{\rm K}$

CORRECTIONS TO EPSILON_K

- In usual applications ξ=Im A₀ / Re A₀ was taken to be equal to zero
- Given the Lattice QCD precision this in no longer acceptable as pointed out by Buras and Guadagnoli (2008)
- The correction can be estimated using epsilon'/epsilon (!)
- Together with other factors it amounts to a ~-8% correction
- Overall the SM prediction for ε_{K} is about 20% lower than the measured value...

LATTICE QCD AND EPSILON'/EPSILON

- The computation of non-leptonic matrix elements is very complex
- Important progress on the $K \rightarrow \pi \pi$ (I=2) amplitudes (arXiv:1206.5142, T.Blum, P. Boyle, N. Christ et al.) which translates into an electroweak penguin contribution:

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon}|_{EWP} = -(6.25 \pm 0.44(stat) \pm 1.19(syst)) \times 10^{-4}$$

- There is hope for a *ab initio* calculation of the QCD penguin which is even more difficult
- Epsilon'/Epsilon is very sensitive to new physics, a reliable determination of the SM contribution is very important

Kaon Rare Decays (Overview)

"NO-LOSE" THEOREM

Measure precisely SM parameters or explore structure of New Physics

SENSITIVITY TO NEW PHYSICS SCALE FOR "MINIMAL FLAVOUR VIOLATION"

10% Overall CKM error

1% Overall CKM error

D'Ambrosio, Giudice, Isidori, Strumia (2002)

Kaon Rare Decays and NP: EXAMPLE 1

C. The Z penguin (and its associated W box)

- Relatively slow decoupling (w.r.t. boxes or tree).

(courtesy by Christopher Smith)

EXAMPLE 2: RARE K DECAY FLAVOR VIOLATING Z² SENSITIVITY TO

5 0 0

5

10

 $B(K^+ \to \pi^+ \nu^- \nu)$ [10⁻¹¹]

15

20

to direct searches of new gauge bosons

EXAMPLE 3: FCNC Z COUPLINGS AND PARTIAL COMPOSITENESS

D.M. Straub arXiv:1302.4651

STILL ROOM FOR VISIBLE NEW PHYSICS EFFECTS IN FCNC KAON PHYSICS IN SPITE OF ALL THE STRINGENT HIGH-ENERGY AND HIGH-INTENSITY CONSTRAINTS

STATE OF THE ART

Decay	Branching Ratio (×10 ¹⁰)		
	Theory (SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$	
$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.27 \pm 0.04^{[3]}$	< 260 (90% CL) ^[4]	
$B_s^0 ightarrow \mu^+ \mu^-$	32.3 ± 2.7^{5}	$28_{-6}^{+7[6]}$	

[1] J. Brod, M. Gorbahn, PRD78, arXiv:0805.4119
[2] AGS-E787/E949 PRL101 (2008) 191802, arXiv:0808.2459
[3] M. Gorbahn arXiv:0909.2221
[4] KEK-E391a, arXiv:0911.4789v1
[5] A.J. Buras et al., EPJ C72, arXiv:1208.0934
[6]CMS-LHCb, CKM2014

UNITARITY TRIANGLE FOR KAONS

 When the bd UT is used, the variables extracted from kaons are affected by an apparent parametric uncertainty due to V_{cb}

- The six UTs are all born equal (in the SM they have the same measure of CP-violation, the Jarlskog invariant J_{CP})
- A remarkable feature is that in the *ds* UT $J_{CP}= 5.6 * sqrt(BR(K_L \rightarrow \pi^0 \vee \nu))$ This is a determination which is basically free from theoretical error (down to 1-2%)
- It is to be compared with the current J_{CP} determination from the bd UT fit where the error ranges from 3% to 7% depending on the treatment of the errors

 $Br(K_L^0 \to \pi^0 \nu \overline{\nu})$

HOLY GRAIL OF FLAVOUR PHYSICS?

- Why it is so special:
- 1. Apart from a small admixture $(\epsilon_{K} \sim 2.228 \ 10^{-3}), K_{L}^{0}$ is a CP eigenstate. Neglecting the CP-even state we can write:

$$<\pi^{0} \nu \overline{\nu} |A| K^{0} > \sim V_{td} V_{ts}^{*} X(x_{t}) + P_{c}(X) V_{cd} V_{cs}^{*} \qquad |K_{L}^{0} > \sim \frac{K^{0} - \overline{K}^{0}}{\sqrt{2}} <\pi^{0} \nu \overline{\nu} |A| \overline{K}^{0} > \sim V_{td}^{*} V_{ts} X(x_{t}) + P_{c}(X) V_{cd}^{*} V_{cs} \qquad |K_{L}^{0} > \sim \frac{K^{0} - \overline{K}^{0}}{\sqrt{2}}$$

2. In taking the difference, the charm part (which is almost real) drops off and only the imaginary part of the top contribution remains!

 $<\pi^{0}\nu\overline{\nu}|A|K_{L}^{0}>\sim \mathrm{Im}V_{td}V_{ts}^{*}X(x_{t})$

- 3. The main experimental background $(K_{L}^{0} \rightarrow \pi^{0} \pi^{0})$ is suppressed by CP conservation !
- 4. The very long life time of the K_{L}^{0} makes the interesting partial width "measurable" (Br~O(10⁻¹¹))

 $Br(K_L^0 \to \pi^0 \nu \overline{\nu})$

Formulas from A.J. Buras et al. RMP 80, 2008

$$Br(K_L^0 \to \pi^0 \nu \overline{\nu}) = \kappa_L \times \left(\frac{\operatorname{Im} \lambda_t}{\lambda^5} X(x_t)\right)^2$$
$$\kappa_L = (2.231 \pm 0.013) \times 10^{-10} \left[\frac{\lambda}{0.225}\right]^8$$
Numerical example:

$$\lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}$$

$$Br(K_L^0 \to \pi^0 \nu \overline{\nu}) \sim 2.3 \times 10^{-11}$$

EXPERIMENT: BR<2.6 10⁻⁸ 90%CL (E391a - KEK) NEXT EXPERIMENT: KOTO (E14, J-PARC)

KOTO experiment

- Study of $K_L \rightarrow \pi^0 \nu \ \overline{\nu} @J-PARC 30 GeV$ Main Ring.
 - Successor to the E391a experiment
 - Goal is to observe few SM events.

/在0日11日末曜日

As presented by Koji Shiomi at CKM 2014 (Vienna)

Current SES based on 100 h run in 2013 (Preliminary): 1.29×10^{-8}

Expect "nominal" beam intensity in 2017

KOTO PRELIMINARY

Veto detector performance

• 4 cluster samples

14年9月11日木曜日

 $Br(K^+ \to \pi^+ \nu \overline{\nu})$

$$Br(K^+ \to \pi^+ \nu \overline{\nu}) = \kappa_+ (1 + \Delta_{EM}) \times$$

$$\left[\left(\frac{\operatorname{Im} \lambda_t}{\lambda^5} X(x_t) \right)^2 + \left(\frac{\operatorname{Re} \lambda_c}{\lambda} P_c(X) + \frac{\operatorname{Re} \lambda_t}{\lambda^5} \right)^2 \right]$$

$$\kappa_+ = (5.173 \pm 0.025) \times 10^{-11} \left[\frac{\lambda}{0.225} \right]^8$$

 $\lambda_i = V_{id} V_{is}$

Formulas from A.J. Buras et al. RMP 80, 2008

$$Br(K^+ \to \pi^+ \nu \overline{\nu})$$
 (MY NUMEROLOGY)

 $Br(K^{+} \to \pi^{+} v \overline{v}) \propto 1.56 \times 10^{-4} \times \begin{bmatrix} V_{td} V_{ts}^{*} |^{2} X(x_{t})^{2} + 2\lambda^{5} P_{c}(X) | V_{td} V_{ts}^{*} | X(x_{t}) \cos \beta_{K} + \lambda^{10} P_{c}(X)^{2} \end{bmatrix} \approx \\ \begin{bmatrix} 4.40 + 3.68 + 0.87 \end{bmatrix} \times 10^{-11} = \\ 8.95 \times 10^{-11} \end{bmatrix}$

The charm- top-quark interference term is comparatively large

$$\cos \beta_{\rm K} = \cos \beta - \beta_{\rm s} \approx 0.94$$

For this set of values the m_c the parametric uncertainty is: $\delta Br/Br \sim 0.68 \ \delta P_c/P_c$

 $|V_{td}V_{ts}^*| \sim 3.69 \times 10^{-4}$ (PDG 2014)

 $X(x_t) \sim 1.44$ (Buras et al.)

 $P_{c}(X) = 0.41 \pm 0.05$ (Buras et al.)

CHARGED K BEAMS

"Stopped"

- Work in Kaon frame
- High Kaon purity (Electro-Magneto-static Separators)
- Compact Detectors

"In-Flight"

- Decays in vacuum (no scattering, no interactions)
- RF separated or Unseparated beams
- Extended decay regions

Ехр	Machine	Meas. or UL 90% CL	Notes
	Argonne	< 5.7 x 10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	< 5.6 x 10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4 x 10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787	AGS	(1.57 ^{+1.75} -0.82) x 10 ⁻¹⁰	Stopped
E949	AGS	(1.73 ^{+1.15} - _{1.05}) x 10 ⁻¹⁰	Stopped; PPN1+PPN2
NA62	SPS		In-Flight; Unseparated

STATE OF THE ART: E787/E949 DECAYS AT REST

 $B(K^+ \rightarrow \pi^+ v v v) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

PRL101, arXiv:0808.2459, AGS-E787/E949

NA62 Collaboration

NA62 SCHEMATIC LAYOUT

paves the way to a broad physics program

NA6

NA62 IN-FLIGHT TECHNIQUE

$$Br(K^+ \to \pi^+ \nu \overline{\nu})$$

MA62

 P_{π}

ν

ν

 $P_{\mathbf{K}}$

- Calorimetry to veto extra particles
- Very light trackers to reconstruct the K^+ and the π^+ momenta
- Full particle identification

NA62 SENSITIVITY

Decay	evt/year*
K ⁺ → π^+ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

One year = 100 days, 50% Efficiency With new CERN-LHC running cycle we expect more days / year

INSTALLATION AND START UP

- The picture shows the last large element being installed (STRAW4)
- Beam time 2014: October 6 December 15
- Currently writing ~9 TB of data / day

NA62 DETECTOR STATUS

View of ECN3

scientific commettee Frascati

NA62

LAV 1-5 in TTC8

37

NA62 DETECTOR STATUS

Straw3 - LAV10 - MNP33 -Straw2 - LAV9

NA62

RICH Straw 4 and LAV11

NA62 DETECTOR STATUS

LKr - CHOD LAV12 and RICH

NA62 view from LKr

NA62

Birmingham, Bristol, Liverpool

Nominal N₂ pressure for Kaons

Preliminary: single hit time resolution (~280 ps)

KTAG (PRELIMINARY)

GIGATRACKER (GTK)

CERN (PH-DT, PH-ESE, PH-SME, EN,...) Ferrara, Louvain-la-Neuve, Torino

GTK READ OUT CHIP

TDCPix Wire Bonded to the Test Card

TDCPix 130 nm CMOS IBM

CERN PH-ESE Design

Excellent performance Major breakthrough for NA62

Full Chain Behaviour

Block	Status	Remarks
Configuration	Working	5 chips tested
PLL	Working	3.2 GHz
Serialisers	Working	3.2 Gb/s
Bandgaps	Working	
Temperature Interlock	Working	
Column Biasing	Working	200 DACs
In-Pixel Threshold Trimming	Working	1800 DACs
# of bugs detected	0	

"Whole Chip" Resolution ~ 72 ps RMS

CHANTI

- The purpose of the CHANTI is to identify inelastic interactions occurring in the GTK3
- Six stations made by triangular scintillating bars read out via WLS fiber and SiPM
- 300 channels
- Installed and aligned to +/- 0.1 mm
- Typical rates O(10-100 kHz)/ch
- Very preliminary single hit time resolution (no single channel offset correction, no geometrical correction) = 1.4 ns

NA 62

LARGE ANGLE VETOES (LAV)

Frascati, Naples, Pisa, Rome I

LIQUID KRYPTON READ OUT

NA62

14 bit FADC, 40 Ms, 32 ch / module **432 modules, 28 VME crates** Specifications/Tender : CERN PH-ESE,PH-SME Manufacturer: CAEN (ITALY)

FIRST LOOK AT THE 2014 LKR DATA...

Not even Preliminary

NA62 STRAW TRACKER

CERN (PH-DT, PH-ESE, PH-SME) - JINR

COMPLETION OF THE STRAWS

Number (Ch/Mod/ Coordinates)	Start of assembling	End of assembling	End of testing	Delivered to CERN	Assembling and testing time (months)
CH2 M1 U-V	09.2012	04.2013	10.2013	11.2013	14
CH2 M2 X-Y	07.2013	01.2014	02.2014	04.2014	8
CH4 M1 U-V	12.2013	02.2014	03.2014	04.2014	4
CH4 M2 X-Y	02.2014	05.2014	06.2014	07.2014	5

STRAW COMMISSIONING

NA62

CERN (PH-DT,..), Firenze, Perugia

NA62 RICH

NA62

F/E Electronics

RICH COMMISSIONING

RUN 1068 (Q1×MUV3)

1170 bursts

RICH RINGS

Single event Saleve side

Single event Saleve side

RICH TIME RESOLUTION (PRELIMINARY)

For each event, average time of half of the hits - average time of the other half σ = 200 ps = 2 * event time resolution

event time resolution = 100 ps

- MUV3 already running in technical run 2012.
- Now: all scintillator tiles equipped with PMTs.
- Still old NA48-AKL CFD readout → Will be renewed for 2015 run.

TRIGGER AND DATA ACQUISITION (TDAQ)

Key element for high-rate rare decay search Several innovative solutions

First test of real time use of GPUs in hardware trigger

STATUS OF NA62: OUTLOOK

- The baseline detector is being commissioned with beam
- With NA62 starting, CERN is again exploring the Standard Model using high intensity Kaon beams. This newly built apparatus is an attractive long-term facility to search for new physics
- Accumulate and analyze O(10¹³) good kaon decays before Long Shutdown 2 (LS2)

• Evaluate ultimate reach

LHC schedule beyond LS1

LS2 starting in 2018 (July)

Shutdown LS3 LHC: starting in 2023 => 30 months + 3 months BC Beam commissioning Injectors: in 2024 => 13 months + 3 months BC Technical stop 30 fb⁻¹ 2015 2016 2017 2018 2019 2020 2021 Q2 Q3 Q4 Q2 | Q3 | Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 01 01 01 LHC EYETS YETS YETS S 2 YETS Run 2 Run 3 Injectors 2022 2023 2024 2025 2026 2027 2028 Q2 Q3 Q4 Q1 Q2 Q3 Q2 Q3 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q1 Q4 Q1 Q1 LHC **YETS** LS₃ Run 4 YETS Injectors 300 fb⁻¹ 2029 2030 2031 2032 2033 2034 2035 Q1 Q2 Q3 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q1 Q1 Q1 LHC LS₄ **LS 5** Run 5 Injectors 3'000 fb⁻¹ (Extended) Year End Technical Stop: (E)YETS

=> 18 months + 3 months BC

Physics

The CERN LHC Roadmap

Availability of the LHC injectors (R. Heuer, March 2014 Council)

A NICE INTERPLAY BETWEEN KAONS AND BEES IN THE SM

$$\frac{\Gamma(K_L^0 \to \pi^0 \nu \overline{\nu})}{\Gamma(K_S^0 \to \pi^0 \nu \overline{\nu})} = \tan^2(\beta - \beta_s)$$

$$\frac{\Gamma(K_L^0 \to \pi^0 \nu \overline{\nu})}{\Gamma(K^+ \to \pi^+ \nu \overline{\nu})} = r_{is} \sin^2(\beta - \beta_s)$$

Summary: Outlook in 2025

New physics at LHC Explore flavor structure of "new" SM No new physics at LHC Explore extremely high mass scales with indirect probes

Either way, $K_L \rightarrow \pi^0 v \bar{v}$ will still be quite interesting!

In 2025, the experimental situation will have progressed:

- NA62 may have $BR(K^+ \rightarrow \pi^+ v \bar{v})$ to < 5%
- KOTO will have evidence for $K_L \rightarrow \pi^0 v \bar{v}$ events
- KOTO-2 will be starting up with 10 event/sly sensitivity

Will a 100-event $K_L \rightarrow \pi^0 v \overline{v}$ experiment at CERN be in the works?

- At an upgraded T10 facility using NA62 infrastructure?
- At a new high-intensity facility at PS or SPS?
- As part of an FCC injector upgrade?

More questions than answers, but a 100 event $K_L \rightarrow \pi^0 v \bar{v}$ experiment is surely a worthwhile endeavor!

Rare kaon decays at FCC injectors - M. Moulson (Frascati/CERN) - FCC injector physics WG - 29 September 2014

Time to look forward!!

FLAVOUR: INTERPLAY OF THEORY, EXPERIMENTS AND ACCELERATORS

- Effective theories, Lattice QCD, phenomenology, exclusive decays
- Flavour "factories"
- CKM trigonometry
- FCNC, Rare decays, CP-Violation
- Maximal Flavour Conservation (or Minimal Flavour Violation)
- Yukawa couplings of the Higgs, masses of fermions

...Pipeline full for ten exciting years at least!
A.D. circa 2025: Crossroad for Flavour Physics