

Charged Lepton Flavour Physics

Emilie Passemar

Indiana University/Jefferson Laboratory

The Landscape of Flavour Physics towards the high intensity era

Pisa, December 9, 2014

1. Introduction and Motivation

1.1 Why study charged leptons?

 For some modes accurate calculations of hadronic uncertainties essential

1.2 The Program

2. Charged Lepton-Flavour Violation

2.1 Introduction and Motivation

- Neutrino oscillations are the first evidence for lepton flavour violation
- How about in the charged lepton sector?
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.:
$$\mu \rightarrow e\gamma$$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br(\tau\to\mu\gamma)<10^{-40}\right]$$

2.1 Introduction and Motivation

- Neutrino oscillations are the first evidence for lepton flavour violation
- How about in the charged lepton sector?
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.:
$$\mu \rightarrow e\gamma$$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br(\tau\to\mu\gamma)<10^{-40}\right]$$

• Extremely *clean probe of beyond SM physics*

Emilie Passemar

2.1 Introduction and Motivation

In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D. Hitlin	$ au ightarrow \mu \gamma \ au ightarrow \pi$ -	$\rightarrow \ell \ell \ell$	
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 (+ v mixing Cheng, Li, PRD 45 (1980) 1908		
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7
SM + heavy Maj $v_{\rm R}$	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10-9	10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

Emilie Passemar

2.2 CLFV processes: muon decays

• Several processes: $\mu \to e\gamma$, $\mu \to e\overline{e}e$, $\mu(A,Z) \to e(A,Z)$

2.2 CLFV processes: tau decays

48 LFV modes studied at Belle and BaBar

2.2 CLFV processes: tau decays

Expected sensitivity 10⁻⁹ or better at LHCb, Belle II?

2.3 Effective Field Theory approach

- Build all D=6 LFV operators:
 - ➢ Dipole

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

- Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector)
- Lepton-gluon (Scalar, Pseudo-scalar)
- 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector)
- Each UV model generates a *specific pattern* of them

2.3 Effective Field Theory approach

Integrating out heavy quarks generates gluonic operator:

$$\frac{1}{\Lambda^{2}} \overline{\mu} P_{L,R} \tau Q \overline{Q} \rightarrow \mathcal{L}_{eff}^{G} \supset -\frac{C_{G}}{\Lambda^{2}} m_{\tau} G_{F} \overline{\mu} P_{L,R} \tau G_{\mu\nu}^{a} G_{g}^{\mu\nu}$$

Importance of this operator emphasized in Petrov & Zhuridov'14

Emilie Passemar

/

2.3 Effective Field Theory approach

• 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector) :

• Summary table:

Cirigliano@Beauty2014

	$\mu \to 3e$	$\mu \to e \gamma$	$\mu \rightarrow e$ conversion
$O^{4\ell}_{S,V}$	✓	_	—
O_D	1	1	✓
O_V^q	—	_	✓
O_S^q	_	_	✓

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes
 key handle on *relative strength* between operators and hence on the *underlying mechanism*

Cirigliano@Beauty2014

• Summary table:

• $\mu \rightarrow e\gamma$ vs. $\mu \rightarrow 3e \implies$ relative strength between *dipole* and *4L* operators

$$\frac{\Gamma_{\mu \to 3e}}{\Gamma_{\mu \to e\gamma}} = \frac{\alpha}{4\pi} I_{\rm PS} \left(1 + \sum_{i} \frac{c_i^{\rm (contact)}}{c^{\rm (dipole)}} \right)$$

Emilie Passemar

Cirigliano@Beauty2014

• Summary table:

• $\mu \rightarrow e\gamma$ vs. $\mu \rightarrow e$ conversion \implies relative strength between *dipole* and *quark* operators

Emilie Passemar

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
${ m O}_{{ m S},{ m V}}^{4\ell}$	✓	—	_	—	_	—
OD	1	1	\checkmark	\checkmark	_	—
O_V^q	_	_	✓ (I=1)	$\checkmark(\mathrm{I=0,1})$	_	_
O_S^q	_	_	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	_	—
O_{GG}	_	_	\checkmark	\checkmark	_	—
O^q_A	_	_	—	_	✓ (I=1)	✓ (I=0)
O_P^q	—	—	—	_	✓ (I=1)	✓ (I=0)
$\mathrm{O}_{\mathrm{G}\widetilde{\mathrm{G}}}$	—	—	—	—	—	✓

 In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
${ m O}_{{ m S},{ m V}}^{4\ell}$	1	_	—	_	_	_
OD	1	1	\checkmark	✓	_	_
O_V^q	_	_	✓ (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	_	_
O_S^q	_	_	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	_	—
O_{GG}	—	—	\checkmark	\checkmark	_	—
O^q_A	—	_	—	_	✓ (I=1)	✓ (I=0)
$\mathrm{O}_\mathrm{P}^\mathrm{q}$	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	—	_	—	_	—	✓

- In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and *decay constants* (e.g. f_n , $f_{n'}$)

Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3 \mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	_	—	_	_	—
OD	✓	✓	\checkmark	✓	_	_
O_V^q	—	_	✓ (I=1)	\checkmark (I=0,1)	_	_
O_S^q	—	_	✓ (I=0)	\checkmark (I=0,1)	_	_
O _{GG}	_	_	\checkmark	\checkmark	_	_
O_A^q	_	_	—	_	✓ (I=1)	✓ (I=0)
O_P^q	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	1

Recent progress in $\tau \rightarrow \mu(e)\pi\pi$ using *dispersive techniques* Celis, Cirigliano, E.P.'14 •

• Hadronic part:
$$H_{\mu} = \langle \pi \pi | (V_{\mu} - A_{\mu}) e^{iL_{QCD}} | 0 \rangle = (Lorentz struct.)_{\mu}^{i} F_{i}(s)$$
 with $s = (p_{\pi^{+}} + p_{\pi^{-}})^{2}$

Form factors determined by solving 2-channel unitarity condition, with I=0 ٠ 2 s-wave $\pi\pi$ and KK scattering data as input $\mathrm{Im}F_n(s) = \sum T^*_{nm}(s)\sigma_m(s)F_m(s)$

$$n = \pi \pi, K\overline{K}$$

Emilie Passemar

- Two handles:

model M

Celis, Cirigliano, E.P.'14

 \blacktriangleright Spectra for > 2 bodies in the final state:

$$\frac{dBR(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} \quad \text{and} \quad dR_{\pi^+ \pi^-} \equiv \frac{1}{\Gamma(\tau \to \mu \gamma)} \frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}}$$

• Studies in specific models

Buras et al.'10

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\boxed{\frac{\operatorname{Br}(\mu^- \to e^- e^+ e^-)}{\operatorname{Br}(\mu \to e\gamma)}}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	0.062.2
$\frac{\mathrm{Br}(\tau \to e^- e^+ e^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	$0.06 \dots 0.1$	$0.06 \dots 2.2$
$\frac{\mathrm{Br}(\tau \to e^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$	$0.03 \dots 1.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.04 \dots 1.4$
$\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	$0.8.\dots 2$	~ 5	$0.3. \ldots 0.5$	$1.5 \dots 2.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{\mathbf{R}(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{\mathrm{Br}(\mu \rightarrow e \gamma)}$	$10^{-3} \dots 10^2$	$\sim 5 \cdot 10^{-3}$	0.080.15	$10^{-12} \dots 26$

Disentangle the underlying dynamics of NP

2.7 Model discriminating of Spectra: $\tau \rightarrow \mu \pi \pi$

Celis, Cirigliano, E.P.'14

Celis, Cirigliano, E.P.'14

2.7 Model discriminating of Spectra: $\tau \rightarrow \mu \pi \pi$

Celis, Cirigliano, E.P.'14

3. Charged Lepton-Flavour Violation and Higgs Physics

3.1 Non standard LFV Higgs coupling

•
$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H \implies -Y_{ij} \left(\overline{f}_{L}^{i} f_{R}^{j} \right) h$$

High energy : LHC

n the SM:
$$Y_{ij}^{h_{SM}} = \frac{m_i}{N} \delta_{ij}$$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnick, Koop, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

Hadronic part treated with perturbative QCD

Emilie Passemar

3.1 Non standard LFV Higgs coupling

3.2 Constraints in the μe sector

Constraints from Higgs decay (LHC) vs. low energy LFV and LFC observables

3.3 Constraints in the $\tau\mu$ sector

• At low energy

3.3 Constraints in the $\tau\mu$ sector

3.4 What if $\tau \rightarrow \mu(e)\pi\pi$ observed? Reinterpreting Celis, Cirigliano, E.P'14

Talk by J. Zupan @ KEK-FF2014FALL

- $\tau \rightarrow \mu(e)\pi\pi$ sensitive to $Y_{\mu\tau}$ but also to $Y_{u,d,s}!$
- $Y_{u,d,s}$ poorly bounded

- For $Y_{u,d,s}$ at their SM values : $Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12}$ $Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11}$
- But for $Y_{u,d,s}$ at their upper bound:

 $Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$ $Br(\tau \to e\pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e\pi^0 \pi^0) < 2.1 \times 10^{-7}$

below present experimental limits!

If discovered among other things upper limit on Y_{u,d,s}!
 Interplay between high-energy and low-energy constraints!

4. LFC processes: anomalous magnetic moment of the muon

4.1 Introduction

- The gyromagnetic factor of the muon is modified by loop contribution
- We can also study a_e with better experimental precision but if new physics heavy then more sensitivity in a_u

$$a_{\ell}^{\mathsf{NP}}(\Lambda_{\mathsf{NP}}) \propto \mathcal{O}\left(\frac{m_{\ell}^2}{\Lambda_{\mathsf{NP}}^2}\right) \implies \frac{a_{\mu}^{\mathsf{NP}}}{a_e^{\mathsf{NP}}} \propto \mathcal{O}\left(\frac{m_{\mu}^2}{m_e^2}\right) \approx 43,000$$

a_τ even more sensitive but insufficient experimental accuracy *Eidelman, Giacomini, Ignatov, Passera'07*

But a_e important if NP is light
 Important constraints on NP scenarios

Giudice, Paradisi, Passera'12
4.2 Contribution to $(g-2)_{\mu}$

Need to compute the SM prediction with high precision! *Not so easy!*

4.3 Confronting measurement and prediction

Emilie Passemar

Emilie Passemar

4.4 Towards a model independent determination of HVP and LBL

- Hadronic contribution cannot be computed from first principles
 due to low-energy hadronic effects
- Use analyticity + unitarity is real part of photon polarisation function from dispersion relation over total hadronic cross section data
- Leading order hadronic vacuum polarization : $\frac{P_{\nu}(s) = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}}{(3\pi)^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s^2} R_{\nu}(s)$
- Low energy contribution dominates : ~75% comes from s < (1 GeV)²

 *π*π contribution extracted from data

4.4 Towards a model independent determination of HVP and LBL

- Huge 20-years effort by experimentalists and theorists to reduce error on lowest-order hadronic part
 - Improved e⁺e⁻ cross section data from Novisibirsk (Russia)
 - More use of perturbative QCD
 - > Technique of "*radiative return*" allows to use data from Φ and *B* factories
 - \succ Isospin symmetry allows us to also use τ hadronic spectral functions

But still some progress need to be done

- Inconsistencies τ vs. e+e-: Isospin corrections?
- Inconsistencies between ISR and direct data: Radiative corrections?
- Lattice Calculation?

New data expected from KLOE2, Belle-II, BES-III?

4.4 Towards a model independent determination of HVP and LBL

- For light-by-light scattering: until recently it was believed that dispersion relation approach not possible (4-point function)
 only model dependent estimates
- But recent progress from Bern group: Colangelo, Hoferichter, Procura, Stoffer'14
 Data driven estimate possible using dispersion relations!

٦t

4.5 What could a 3σ discrepancy tell us?

• Amount of discrepancy in ballpark of SUSY with mass scale of several 100 GeV $\frac{1}{2}$

$$\Delta a_{\mu}^{\text{SUSY}} \approx +13 \cdot 10^{-10} \operatorname{sgn}(\mu) \left(\frac{100 \text{ GeV}}{m_{\text{SUSY}}}\right)^2 \tan \beta$$

• Dark photon scenarios?

$$\Delta a_{\mu}^{\mathrm{dark}\,\gamma} \approx \frac{\alpha}{2\pi} \, \varepsilon^{2} \cdot \mathcal{F}\left(\frac{m_{\mathrm{dark}\,\gamma}}{m_{\mu}}\right)$$

- Correlations with LFV modes to study
- Before interpreting this discrepancy as new physics piece need to be sure the hadronic background is under control:
 - Theoretical efforts needed
 - New experimental measurements

Lafferty, summary talk@Tau2014

Isidori, Mescia, Paradisi, Temes'06

5. Conclusion and Outlook

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the *intensity* and *precision frontiers*
- *Charged leptons* offer an important spectrum of possibilities:
 - LFV measurement has SM-free signal
 - Current experiments and mature proposals promise orders of magnitude sensitivity improvements
 - > The muon g–2 may already show a deviation from the SM
 - Progress towards a better knowledge of hadronic uncertainties
 - New physics models usually strongly correlate these sectors

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged leptons offer an important spectrum of possibilities:
 - We show how CLFV decays offer an excellent model discriminating tools giving indications on
 - the *mediator* (operator structure)
 - the source of flavour breaking (comparison $\tau \mu vs. \tau e vs. \mu e$)
- Interplay low energy and collider physics: LFV of the Higgs boson

7. Back-up

CLFV in see-saw models

- Observable CLFV if see-saw scale low (with protection of LN)
- Each model leads to specific CLFV pattern

 CLFV in Type II seesaw: tree-level 4L operator (D,V at loop) → 4-lepton processes most sensitive

• CLFV in Type III seesaw: tree-level LFV couplings of $Z \Rightarrow \mu \rightarrow 3e$ and $\mu \rightarrow e$ conversion at tree level, $\mu \rightarrow e\gamma$ at loop

Abada-Biggio-Bonnet-Gavela-Hambye '07, '08

 Ratios of 2 processes with same flavor transition are fixed

 $\begin{array}{lll} Br(\mu \to e\gamma) &=& 1.3 \cdot 10^{-3} \cdot Br(\mu \to eee) = 3.1 \cdot 10^{-4} \cdot R_{T_i}^{\mu \to e} \\ Br(\tau \to \mu\gamma) &=& 1.3 \cdot 10^{-3} \cdot Br(\tau \to \mu\mu\mu) \\ Br(\tau \to e\gamma) &=& 1.3 \cdot 10^{-3} \cdot Br(\tau \to eee) \end{array}$

2.4 Model discriminating power of muon processes

• Dependence: NP scale Λ versus ratio of two operators $\kappa = \frac{C_1}{C_2}$

DeGouvea & Vogel'13

2.5 Model discriminating power of Tau processes

- Two handles: ٠

model M

> Branching ratios: $R_{F,M} \equiv \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_{M})}$ with F_{M} dominant LFV mode for

Celis, Cirigliano, E.P.'14

Spectra for > 2 bodies in the final state:

$$\frac{dBR(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} \text{ and } dR_{\pi^+ \pi^-} \equiv \frac{1}{\Gamma(\tau \to \mu \gamma)} \frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}}$$

- Benchmarks: ٠
 - > Dipole model: $C_D \neq 0$, $C_{else} = 0$
 - > Scalar model: $C_S \neq 0$, $C_{else} = 0$
 - > Vector (gamma,Z) model: $C_V \neq 0$, $C_{else} = 0$
 - Gluonic model: $C_{GG} \neq 0$, $C_{else} = 0$

 $\mu \rightarrow e vs \mu \rightarrow e\gamma$

• Assume dipole dominance:

 For μ →e conversion, target dependence of the amplitude is different for V,D or S models
 Cirigliano, Kitano, Okada, Tuzon'09

2.5 Model discriminating power of Tau processes

- Two handles: ٠

> Branching ratios: $R_{F,M} \equiv \frac{\Gamma(\tau \rightarrow F)}{\Gamma(\tau \rightarrow F_{M})}$

Celis, Cirigliano, E.P.'14

with F_{M} dominant LFV mode for model M

- ρ (770) resonance (J^{PC}=1⁻⁻): cut in the $\pi^+\pi^-$ invariant mass: 587 MeV $\leq \sqrt{s} \leq$ 962 MeV
- $f_0(980)$ resonance (J^{PC}=0⁺⁺): cut in the $\pi^+\pi^-$ invariant mass: ٠ 906 MeV $\leq \sqrt{s} \leq 1065$ MeV

Emilie Passemar

2.5 Model discriminating power of Tau processes

- Two handles:
 - Branching ratios:

$$R_{F,M} \equiv \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$$

Celis, Cirigliano, E.P.'14

with ${\rm F}_{\rm M}$ dominant LFV mode for model M

		$\mu\pi^+\pi^-$	μho	μf_0	3μ	$\mu\gamma$
D	$R_{F,D}$	$0.26 imes 10^{-2}$	$0.22 imes 10^{-2}$	$0.13 imes 10^{-3}$	$0.22 imes 10^{-2}$	1
	BR	$< 1.1 \times 10^{-10}$	$<9.7\times10^{-11}$	$<5.7\times10^{-12}$	$<9.7\times10^{-11}$	$<4.4\times10^{-8}$
S	$R_{F,S}$	1	0.28	0.7	-	-
	BR	$<~2.1\times10^{-8}$	$<~5.9\times10^{-9}$	$<~1.47\times10^{-8}$	-	-
$V^{(\gamma)}$	$R_{F,V^{(\gamma)}}$	1	0.86	0.1	-	-
	BR	$<~1.4\times10^{-8}$	$<~1.2\times10^{-8}$	$<~1.4\times10^{-9}$	-	-
Z	$R_{F,Z}$	1	0.86	0.1	-	-
	BR	$<~1.4\times10^{-8}$	$<~1.2\times10^{-8}$	$<~1.4\times10^{-9}$	-	-
G ↑	$R_{F,G}$	1	0.41	0.41	-	-
	BR	$<~2.1\times10^{-8}$	$< 8.6 \times 10^{-9}$	$< 8.6 imes 10^{-9}$	-	-
Benchmark			τ_μ /	7	τ μ 	τμ

54

4.2 Prospects:

3.4.2 Dispersion relations: Method

Unitarity is the discontinuity of the form factor is known

$$\frac{1}{2i} disc \ \mathbf{F}_{\pi\pi}(s) = \operatorname{Im} F_{\pi\pi}(s) = \sum_{n} \mathbf{F}_{\pi\pi \to n} \left(\mathbf{T}_{n \to \pi\pi} \right)^{*}$$

• Only one channel $n = \pi \pi$

$$disc \left[\underbrace{1}_{2i} disc F_{I}(s) = Im F_{I}(s) = F_{I}(s) \sin \delta_{I}(s)e^{-i\delta_{I}(s)} \right]$$

$$\pi \pi \text{ scattering phase known from experiment }$$

$$Watson's theorem$$

3.4.2 Dispersion relations: Method

- Knowing the discontinuity of $F \implies$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$F(s) = \frac{1}{\pi} \oint \frac{F(s')}{s' - s} ds' \implies \frac{1}{2i\pi} \int_{M_{PP}^2}^{\infty} \frac{disc [F(s')]}{s' - s - i\varepsilon} ds'$$

• If *F* does not drop off fast enough for $|s| \rightarrow \infty$ subtract the DR

$$F(s) = P_{n-1}(s) + \frac{s^n}{\pi} \int_{M_{PP}^2}^{\infty} \frac{ds'}{s'^n} \frac{\operatorname{Im}[F(s')]}{(s'-s-i\varepsilon)}$$

 $P_{n-1}(s)$ polynomial

 $s_{th} \equiv M_{PP}^2$

3.4.2 Dispersion relations: Method

• Solution: Use analyticity to reconstruct the form factor in the entire space

Omnès function :
$$\Omega_{I}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta_{I}(s')}{s'-s-i\varepsilon}\right]$$

 Polynomial: P_I(s) not known but determined from a matching to experiment or to ChPT at low energy • Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{(s' + s - i\varepsilon)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

3.4.3 Determination of $F_V(s)$

Determination of $F_V(s)$ thanks to precise measurements from Belle!

Emilie Passemar

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

- No experimental data for the other FFs → Coupled channel analysis up to √s~1.4 GeV Donoghue, Gasser, Leutwyler'90 Inputs: I=0, S-wave ππ and KK data Moussallam'99 Daub et al'13
- Unitarity:

Emilie Passemar

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

Inputs : $\pi\pi \rightarrow \pi\pi$, KK

Celis, Cirigliano, E.P.'14

- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow *reconstruct T matrix* Emilie Passemar

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

• General solution:

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^\infty \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_$$

Emilie Passemar

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• Fix the polynomial with requiring $F_p(s) \rightarrow 1/s$ (Brodsky & Lepage) + ChPT: Feynman-Hellmann theorem: $\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$

$$\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d} \right) M_P$$
$$\Delta_P(0) = \left(m_s \frac{\partial}{\partial m_s} \right) M_P^2$$

• At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• At LO in ChPT:

$$M_{\pi^{+}}^{2} = (m_{u} + m_{d}) B_{0} + O(m^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

 $\Gamma_K(0) = (0.5 \pm 0.1) \ M_\pi^2$ $\Delta_K(0) = 1^{+0.15}_{-0.05} \left(M_K^2 - 1/2M_\pi^2 \right)$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

Determination of the polynomial

• General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$\begin{aligned} P_{\theta}(s) &= 2M_{\pi}^{2} + \left(\dot{\theta}_{\pi} - 2M_{\pi}^{2}\dot{C}_{1} - \frac{4M_{K}^{2}}{\sqrt{3}}\dot{D}_{1}\right)s\\ Q_{\theta}(s) &= \frac{4}{\sqrt{3}}M_{K}^{2} + \frac{2}{\sqrt{3}}\left(\dot{\theta}_{K} - \sqrt{3}M_{\pi}^{2}\dot{C}_{2} - 2M_{K}^{2}\dot{D}_{2}\right)s\end{aligned}$$

Dispersion relations: Model-independent method, based on first principles that extrapolates ChPT based on data

3.5 Results

Emilie Passemar

Belle'08'11'12 except last from CLEO'97

Isospin relation muon g-2

dispersion relation approaches for a_{μ} (I)

Hoferichter, Colangelo, Procura, Stoffer (2014)

dispersion formalism for $\gamma^* \gamma^* \rightarrow \gamma^* \gamma$

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

master formula for a_{μ}

$$a_{\mu}^{\pi\pi} = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{I^{\pi\pi}}{q_{1}^{2}q_{2}^{2}s((p+q_{1})^{2}-m^{2})((p-q_{2})^{2}-m^{2})},$$

$$I^{\pi\pi} = \sum_{i \in \{1,2,3,6,14\}} \left(T_{i,s}I_{i,s} + 2T_{i,u}I_{i,u} \right) + 2T_{9,s}I_{9,s} + 2T_{9,u}I_{9,u} + 2T_{12,u}I_{12,u} I_{12,u} I_{12,u} \right),$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ integration kernels

$$I_{1,s} = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{s'-s} \left(\frac{1}{s'-s} - \frac{s'-q_1^2-q_2^2}{\lambda(s',q_1^2,q_2^2)} \right) \mathrm{Im}\bar{h}_{++,++}^{0}(s';q_1^2,q_2^2;s,0)$$
$$I_{6,s} = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{(s'-q_1^2-q_2^2)(s'-s)^2} \mathrm{Im}\bar{h}_{+-,+-}^{2}(s';q_1^2,q_2^2;s,0) \left(\frac{75}{8}\right)$$

Helicity amplitudes contribute up to J = 2 (S and D waves)

Slide by M. Vanderhaeghen, talk at "Lepton Moments 2014", July 2014

2.5 Model discriminating power of Tau processes

• Studies in specific models

Buras et al..'10

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{\mathrm{Br}(\mu^- \to e^- e^+ e^-)}{\mathrm{Br}(\mu \to e\gamma)}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	0.062.2
$\frac{\mathrm{Br}(\tau \to e^- e^+ e^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	0.060.1	$0.06 \dots 2.2$
$\frac{\mathrm{Br}(\tau \to e^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$	$0.03 \dots 1.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.04 \dots 1.4$
$\frac{\mathrm{Br}(\tau^- \to e^- e^+ e^-)}{\mathrm{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	$0.8.\dots 2$	~ 5	$0.3. \dots 0.5$	$1.5 \dots 2.3$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{\mathbf{R}(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{\mathrm{Br}(\mu \rightarrow e \gamma)}$	$10^{-3}\dots 10^2$	$\sim 5\cdot 10^{-3}$	0.080.15	$10^{-12} \dots 26$
2.5 Model discriminating power of Tau processes

• Depending on the UV model different correlations between the BRs

Interesting to study to determine the underlying dynamics of NP

4. CP-odd Higgs with LFV

4.1 Constraints from $\tau \rightarrow P$

• Tree level Higgs exchange

•
$$\boldsymbol{L}_{\boldsymbol{Y}} \longrightarrow \mathcal{L}_{eff} \simeq -\frac{A}{v} \left(\sum_{q=u,d,s} y_q^A m_q \, \bar{q} i \gamma_5 \, q - \sum_{q=c,b,t} y_q^A \frac{\alpha_s}{8\pi} \, G^a_{\mu\nu} \, \widetilde{G}^a_{\mu\nu} \right)$$

 $\widetilde{G}^a_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \, G^a_{\alpha\beta}$

Mediate only one pseudoscalar meson very characteristic!

Tree level Higgs exchange
≻ η, η'

$$\Gamma\left(\tau \to \ell\eta^{(\prime)}\right) = \frac{\bar{\beta}\left(m_{\tau}^2 - m_{\eta}^2\right)\left(|Y_{\mu\tau}^A|^2 + |Y_{\tau\mu}^A|^2\right)}{256\,\pi\,M_A^4\,v^2\,m_{\tau}} \Big[(y_u^A + y_d^A)h_{\eta'}^q + \sqrt{2}y_s^Ah_{\eta'}^s - \sqrt{2}a_{\eta'}\sum_{q=c,b,t}\,y_q^A\Big]^2$$

with the decay constants :

$$\begin{split} \langle \eta^{(\prime)}(p) | \bar{q} \gamma_5 q | 0 \rangle &= -\frac{i}{2\sqrt{2}m_q} h^q_{\eta^{(\prime)}} \quad \langle \eta^{(\prime)}(p) | \bar{s} \gamma_5 s | 0 \rangle = -\frac{i}{2m_s} h^s_{\eta^{(\prime)}} \\ \langle \eta^{(\prime)}(p) | \frac{\alpha_s}{4\pi} G^{\mu\nu}_a \widetilde{G}^a_{\mu\nu} | 0 \rangle &= a_{\eta^{(\prime)}} \end{split}$$
$$\gg \pi : \Gamma(\tau \to \ell \pi^0) = \frac{f^2_\pi m^4_\pi m_\tau}{256\pi M^4_A v^2} \left(|Y^A_{\tau\mu}|^2 + |Y^A_{\mu\tau}|^2 \right) \left(y^A_u - y^A_d \right)^2 \end{split}$$

• $\tau \rightarrow \mu P$

Process	BR 90% CL	$M_A = 200 \text{ GeV}$	$M_A = 500 \text{ GeV}$	$M_A = 700 \text{ GeV}$
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	Z < 0.018	Z < 0.040	Z < 0.055
$\tau \to \mu \mu \mu$	$< 2.1 \times 10^{-8}$	Z < 0.28	Z < 0.60	Z < 0.85
$(*) \ \tau \to \mu \pi$	$< 11 \times 10^{-8}$	Z < 41	Z < 257	Z < 503
$^{(*)} \tau \to \mu \eta$	$< 6.5 \times 10^{-8}$	Z < 0.52	Z < 3.3	Z < 6.4
$^{(*)} \tau \to \mu \eta'$	$< 13 \times 10^{-8}$	Z < 1.1	Z < 7.2	Z < 14.1
$\tau \to \mu \pi^+ \pi^-$	$< 2.1 \times 10^{-8}$	Z < 0.25	Z < 0.54	Z < 0.75
$\tau \to \mu \rho$	$< 1.2 \times 10^{-8}$	Z < 0.20	Z < 0.44	Z < 0.62

BaBar'06'10 , Belle'10'11'13

$$\boldsymbol{Z} = \sqrt{\left|\boldsymbol{Y}_{\mu\tau}^{A}\right|^{2} + \left|\boldsymbol{Y}_{\tau\mu}^{A}\right|^{2}}$$

(*) : No contribution from effective dipole operator or CP-even Higgs

N.B.: Diagonal couplings $|y_f^A| = 1$

• $\tau \rightarrow eP$

Process	BR 90% CL	$M_A = 200 \text{ GeV}$	$M_A = 500 \text{ GeV}$	$M_A = 700 \text{ GeV}$
$\tau \to e\gamma$	$< 3.3 \times 10^{8}$	Z < 0.016	Z < 0.034	Z < 0.05
$\tau \rightarrow eee$	$< 2.7 \times 10^8$	Z < 0.14	Z < 0.30	Z < 0.42
$^{(*)} \tau \to e\pi$	$< 8 \times 10^{8}$	Z < 35	Z < 219	Z < 430
$^{(*)}\tau \to e\eta$	$< 9.2 \times 10^{8}$	Z < 0.6	Z < 3.9	Z < 7.6
$^{(*)} \tau \to e\eta'$	$< 16 \times 10^8$	Z < 1.3	Z < 8	Z < 15.6
$\tau \to e \pi^+ \pi^-$	$< 2.3 \times 10^{8}$	Z < 0.26	Z < 0.56	Z < 0.80
$\tau \to e \rho$	$< 1.8 \times 10^{8}$	Z < 0.25	Z < 0.54	Z < 0.76

BaBar'06'10 , Belle'10'11'13

 $Z = \sqrt{\left|Y_{e\tau}^{A}\right|^{2} + \left|Y_{\tau e}^{A}\right|^{2}}$

- (*) : No contribution from effective dipole operator or CP-even Higgs
- N.B.: Diagonal couplings $|y_f^A| = 1$

4.3 Prospects at LHC

• Decay width :
$$\Gamma(A \to \tau^+ \mu^- + \tau^- \mu^+) \equiv \Gamma(A \to \tau \mu) = \frac{M_A \left(|Y_{\tau\mu}^A|^2 + |Y_{\mu\tau}^A|^2 \right)}{8\pi}$$

Assumption : only SM channels $(A \rightarrow gg, b\bar{b}, c\bar{c}, \tau\tau...)$ are important

• Large BR for $A \rightarrow \tau \mu$ can be expected since A does not couple to WW, ZZ at tree level. Results :

