Status of CKM Paradígm

Giulia Ricciardi Università di Napoli "Federico II" Italy

|V_{ub}|, |V_{cb}| crucial parameters

 $|V_{cb}|$ determination

Exclusive decays $B \rightarrow D^{(*)}\ell v$ Massless leptons limit

$$\omega = \frac{p_{D(*)} \cdot p_B}{m_B \ m_{D(*)}}$$

$$\frac{d\Gamma}{d\omega}(B \to D \, l \, v) = \frac{G_F^2}{48\pi^3} (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{\frac{3}{2}} |V_{cb}|^2 |\eta_{EW}|^2 |\mathscr{G}(\omega)|^2$$

$$\frac{d\Gamma}{d\omega}(B \to D^* \, l \, v) = \frac{G_F^2}{48\pi^3} (m_B - m_{D^*})^2 m_{D^*}^3 \chi(\omega) (\omega^2 - 1)^{\frac{1}{2}} |V_{cb}|^2 |\eta_{EW}|^2 |\mathscr{F}(\omega)|^2$$

 $\mathscr{F}(\omega) = \mathscr{G}(\omega)$ $\xi(\omega = 1) = 1$ heavy mass limit at zero recoil

NP corrections beyond HM limit ($m = m_b, m_c$)

$$\mathscr{F}(\boldsymbol{\omega}=1) = 1 + O\left(\frac{1}{m^2}\right) \qquad \qquad \mathscr{G}(\boldsymbol{\omega}=1) = 1 + O\left(\frac{1}{m}\right)$$

Luke's theorem

 Preliminary results ETM Nf=2 (realistic charm finite mass) in agreement Atoui 1305.0462

 only quenched results at the non-recoil point («step scaling» method)

de Divitiis et al 0707.0582

✓ $B \rightarrow D lv$ unquenched calculations at non-zero recoil full kinematic range Qiu et al Fermilab/MILC 1312.0155

-Reducing errors by using world average of exp data (large syst at large ω)

-Heavy-quark discretization errors largest source of uncertainty work in progress to reduce it Jang et al SWME, MILC, and Fermilab 1311.5029

LCSR

 $\square B \to D^*\ell v$

Recent calculations incorporates higher order effects and estimates inelastic corrections

 $\mathscr{F}(1) = 0.86 \pm 0.02$ Gambino, Mannel, Uraltsev, 1206.2296+HFAG 12 Gambino Schwanda 1307.4551

-Much larger th error (More than twice on $|V_{cb}|$)

-OPE power corrections 1/m^{4,5} matrix elements estimated by ground state saturation Mannel, Turczyk, Uraltsev 2010, Heinonen, Mannel 2014

 $\Box \ B \to D \, \ell v$

 ✓ heavy quark expansion (+ BPS limit, where HF symmetries hold all orders) Uraltsev 04
 ✓ +PDG 0312001
 G(1) = 1.04 ± 0.02

-Exp+th on $|V_{cb}|$ uncertainty comparable with LQCD

Consistently lower than LQCD (higher $|V_{cb}|$)

Prospects

✓ Experimental progress

- high statistics at LHCb for $B{\rightarrow}D^{(*)}$ I v ; however, at B factories fully reconstruction of B (or conjugate) helps measurements in presence of missing neutral particle (v)

-Belle II estimated error on $|V_{cb}|$ at 75 ab⁻¹ is about 1%

 $\checkmark \ \mathsf{B_s} \mathop{\rightarrow} \mathsf{D_s} \mathsf{Iv}$

-More affordable on lattice: light spectator fixed to its known mass (m_s) and no extrapolation in the light quark mass needed

-Modification of step scaling method

Blossier et al(ETM Collab). 0909.3187

-Agreement with SR data

 $\mathcal{G}(1) = 1.052(46)$

Atoui et al 1310.5238

Inclusive decays $B \rightarrow X_c \mid v$

HQE for sufficiently inclusive quantities (total width, moments of kinematical distributions) away from perturbative singularities

Double series in a_s and 1/m

$$\Gamma(B \to X_q l \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{qb}|^2 \left[c_3 \langle O_3 \rangle + c_5 \frac{\langle O_5 \rangle}{m_b^2} + c_6 \frac{\langle O_6 \rangle}{m_b^3} + O\left(\frac{\Lambda_{QCD}}{m_b^4}, \frac{\Lambda_{QCD}}{m_b^3 m_c^2} + \ldots\right) \right]$$
$$\frac{m_c^2 \sim \Lambda_{\{\text{QCD}\}} m_b}{m_b^2}$$

STATUS

✓ Completed $O(a_s^2)$ corrections

to leading term (parton model)Aquila et al 05, Pak et al 08, Biswas et al 10to power suppressed coefficients $0(\alpha_s^2 \frac{\Lambda^2}{mb^2})$ Becher et al 07, Alberti et al 12-13, Mannel et al 14

✓ Neglecting perturbative corrections, i.e. working at tree level

computed and estimated up order $O(\frac{1}{m_{5}^{5}})$

Gremm et al 96, Dassinger et al 06, Mannel et al 10,

Heinonen et al 14

Global fit results

simultaneous fit to HQE parameters, quark masses and $|V_{cb}|$ by measuring width + all available hadron, lepton moments

about 70 measurements available (Delphi, CLEO, CDF, Belle, Babar)

Latest fits: in the kinetic scheme, incorporating 6 non perturbative parameters m_c , m_b , μ_{π}^2 , μ_G^2 , ρ_D^3 , ρ_{LS}^3

Including NNLO $O(\alpha_s^2)$ corrections

$$|V_{cb}| = (42.46 \pm 0.88) \times 10^{-3}$$
 HFAG 14

Including recently calculated corrections to power corrected terms $O\left(\frac{\alpha_s^2 \Lambda_{QCD}}{m^2}\right)$

$$|V_{cb}| = (42.21 \pm 0.78) \times 10^{-3}$$
 Alberti et al. 14

Error below 2%

|V_{cb}| summary

Exclusive decays	$ V_{cb} imes 10^3$
$ar{B} o D^* l ar{ u}$	
FNAL/MILC (Lattice unquenched) [11] HFAG (Lattice unquenched) [39, 9, 10] Rome (Lattice quenched $\omega \neq 1$) [13, 14] HFAG (Sum Rules) [15, 16, 39]	$\begin{array}{c} 39.04 \pm 0.49_{exp} \pm 0.53_{latt} \pm 0.19_{QED} \\ 39.54 \pm 0.50_{exp} \pm 0.74_{th} \\ 37.4 \pm 0.5_{exp} \pm 0.8_{th} \\ 41.6 \pm 0.6_{exp} \pm 1.9_{th} \end{array}$
$ar{B} ightarrow D l ar{ extbf{v}}$	
FNAL/MILC (Lattice unquenched $\omega \neq 1$) [18] PDG (HQE + BPS) [24, 23] Rome (Lattice quenched $\omega \neq 1$) [22, 20]	$\begin{array}{c} 38.5 \pm 1.9_{exp+lat} \pm 0.2_{QED} \\ 40.6 \pm 1.5_{exp} \pm 0.8_{th} \\ 41.6 \pm 1.8_{stat} \pm 1.4_{syst} \pm 0.7_{FF} \end{array}$
Inclusive decays	
kin scheme (HFAG) [39] kin scheme [40]	$\begin{array}{r} 42.46 \pm 0.88 \\ 42.21 \pm 0.78 \end{array}$
Indirect fits	
UTfit [41] CKMfitter (3σ) [42]	$\begin{array}{c} 41.7\pm0.6\\ 41.4^{+1.4}_{-1.8}\end{array}$

2.90 disagreement (2014 results)

Low mass open charm spectrum

higher mass charm states background events to $B \to D^* \mid v$ (e.g. via $B \to D^{**} \mid v)$

In the HQ limit heavy and light degrees of freedom decouple P-wave mesons can be grouped into two doublets: $j_l = L \otimes s_l$

 narrow width dominates over large width states (sum rules + HQ, quark models)

Le Yaouanc et al 96, Uraltsev 2001, Morenas et al. 1997, Ebert et al. 1998, Leibovich et al. 2007, Bigi et al. 2007....)

not confirmed by data (1/2 vs 3/2 puzzle)

Belle, Babar 06

✓ Potentially large $B \to D' [\to D_{\frac{1}{2}} ≫ \to D_{\frac{3}{2}}] l v$

Bernlocher et al 12

- \checkmark Relevance of the infinite mass limit approach in b \rightarrow c decay
- ✓ Lattice studies with realistic charm mass are in progress

Atoui et al 13-14

2) BR for inclusive $B \rightarrow X_c \mid v \text{ not saturated by sum of exclusive BR}$ (gap puzzle)

-Decays into D^(*) make up ~ 70% of total inclusive B \rightarrow X_c I v rate -Decays into D^(*) π make up ~ 15% of total inclusive B \rightarrow X_c I v rate

Leaves a gap of about 15%

$$B \rightarrow D^{(\star)} \tau v_{\tau}$$

Babar 2012 1205.5442, 1303.0571

$$\mathcal{R}^*_{\tau/l}(SM) = 0.252 \pm 0.003$$
 2.00

$$\mathcal{R}_{\tau/l}(SM) = 0.297 \pm 0.017$$
 2.7 σ

Combined 3.4σ

agreement with past Belle results

 ✓ Excludes type II 2HDM charged Higgs boson with 99.8% CL (m_{H+} > 10 GeV) (Region with m_{H+} < 10 GeV already excluded by B →Xs γ measurements) _{Misiak 0609232}

Using estimates of FF from HQET and quenched QCD

Large (order ~ 30%) NP breaking of lepton-flavour universality?

Several th framework tested: effective Lagrangians, leptoquarks, additional tensor operators...

A2HDB not able to accommodate present data on R

Celis 14

Fermilab/MILC 1206.4992

using unquenched lattice for R tension lessens a bit 1.7σ

different SM R evaluations reduce tension as well

Fermilab/MILC 1206.4992 Becirevic et al 1206.4977

✓ Fermilab/MILC analysys for R* yet to be carried out

✓ Reanalysis of B → τv at Belle semileptonic tag new tracking and new hadronic tag full data set (20% more) (772 × 10⁶ B pairs) has basically eliminated the tensions between the UT fit and this BR Belle update with full data set expected soon

$|V_{ub}|$ exclusive determination

□ Traditionally extracted by the decay $B \rightarrow \pi \ell v$ (only a single form factor in massless limit)

$$\frac{\mathrm{d}\Gamma(\overline{B}^0 \to \pi^+ \ell \bar{\nu})}{\mathrm{d}q^2} = \frac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} \left| V_{ub} \right|^2 \left| f_+(q^2) \right|^2$$

 $\langle \pi^+(p) | \bar{u} \gamma_\mu b | \bar{B}^0(p+q) \rangle = f_+(q^2) (2p_\mu + q_\mu)$

Non-pert th predictions for f_{+} usually confined to regions of q^2

Complementarity

✓ Light Cone Sum Rules LCSR low q^2 regions ~ < 16 GeV (OPE near the light-cone)

LCSR Khodjamirian et al 11, BGL: Boyd, Grinstein, Lebed, ...

✓ Lattice large $q^2 \sim > 16$ GeV (to avoid large discretization errors) Better fit with data

Unquenched HPQCD 07, FNAL/MILC 09, ma preliminary from ALPHA, HPQCD,

FNAL/MILC, RBC/UKQCD 12

new players

X_{u}	Theory	q^2	V_{ub}
		${\rm GeV}/c^2$	10-3
π ⁰	LCSR [33]	< 12	$3.35 \pm 0.23 \pm 0.09 \substack{+0.36 \\ -0.31}$
	LCSR [34]	< 16	$3.63 \pm 0.20 \pm 0.10 ^{+0.60}_{-0.40}$
	HPQCD [35]	~ 16	$3.44 \pm 0.31 \pm 0.09 \substack{+0.59 \\ -0.39}$
	FNAL [36]	~ 10	$3.29 \pm 0.30 \pm 0.09 \substack{+0.37 \\ -0.30}$
π^+	LCSR [33]	< 12	$3.40 \pm 0.13 \pm 0.09 \substack{+0.37 \\ -0.32}$
	LCSR [34]	< 16	$3.58 \pm 0.12 \pm 0.09 \substack{+0.59 \\ -0.39}$
	HPQCD [35]	> 16	$3.81 \pm 0.22 \pm 0.10 \substack{+0.66 \\ -0.43}$
	FNAL [36]		$3.64 \pm 0.21 \pm 0.09 \substack{+0.40\\-0.33}$
ρ^{0}	LCSR[24]	< 16	$3.56 \pm 0.11 \pm 0.09^{+0.54}_{-0.37}$
	BM [37]		$3.76 \pm 0.11 \pm 0.10^{+0.31}_{-0.25}$
	UKQCD [38]	full range	$3.68 \pm 0.10 \pm 0.10 \substack{+0.29 \\ -0.34}$
	ISGW2 [25]		$3.98 \pm 0.11 \pm 0.10$
ρ^+	LCSR[24]	< 16	$3.51 \pm 0.16 \pm 0.13 \substack{+0.53 \\ -0.36}$
	BM [37]		$3.66 \pm 0.15 \pm 0.14 \substack{+0.30 \\ -0.24}$
	UKQCD [38]	full range	$3.59 \pm 0.15 \pm 0.13 \substack{+0.28 \\ -0.33}$
	ISGW2 [25]		$3.87 \pm 0.16 \pm 0.15$
ω	LCSR [24]	< 12	$3.08 \pm 0.29 \pm 0.11 \substack{+0.44 \\ -0.31}$
	ISGW2 [25]	full range	$3.03 \pm 0.23 \pm 0.11$

Belle PRD88 (2013) 032005

Inclusive $|V_{ub}|$

large b \rightarrow c background ($|V_{cb}/V_{ub}|^2 \approx 100$)

Need experimental phase space cuts to reduce background; in general

$m_X \ll E_X$

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic $b \rightarrow c$):

- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms

 $a_s^n \log^{2n}(2 E_X/m_X)$

to be resummed at all orders in PT

 non-perturbative effects related to a small vibration of the b quark in the B meson (Fermi motion) enhanced

$|V_{ub}|$ determination status

Exclusive decays		$ V_{ub} $:	$\times 10^3$			
$ar{B} o \pi l ar{\mathbf{v}}_l$				-		
HPQCD ($q^2 > 16$) (HFAG) [68, 39]		3.52 ± 0.0	$08_{0.40}^{0.61}$	Long standin		
Fermilab/MILC ($q^2 > 16$) (HFAG) [69, 39]		3.36 ± 0.0	$08_{0.31}^{0.37}$	tension		
lattice, full q^2 range (HFAG) [39]		$3.28\pm$	0.29			
LCSR (q ² < 12) (HFAG) [77, 39]		3.41 ± 0.06	$5^{+0.37}_{-0.32}$			
LCSR ($q^2 < 16$) (HFAG) [80, 39]		3.58 ± 0.06	$5^{+0.59}_{-0.40}$		~3σ	
lattice+ LCSR (Belle) [83]		$3.52\pm$	0.29			
LCSR ($q^2 < 12$) Bayes. an. [82]		3.32	$2^{+0.26}_{-0.22}$			
Indirect fits				Rabar incl	usive average	
UTfit [41]		3.63 ±	0.12		derre average	
CKMfitter (at 3σ) [42] 3			$7^{+0.41}_{-0.31}$	$ V_{ub} = 4.33 \pm 0.24_{\rm exp} \pm 0.15_{\rm th}$		
				_		
Inclusive decays $(V_{ub} \times 10^3)$						
BNLP [106, 107, 108]	GGOU [113]	ADFR	[110, 111, 112]	DGE [109]	
BaBar [105] 4.2	$28 \pm 0.24^{+0.18}_{-0.20}$	$4.35 \pm 0.24^{+0.09}_{-0.10}$		$4.29 \pm 0.24^{+0.18}_{-0.19}$	$4.40 \pm 0.24^{+0.12}_{-0.13}$	
Belle [104] 4.4	$47 \pm 0.27^{+0.19}_{-0.21}$	$4.54 \pm 0.27 \substack{+0.10 \\ -0.11}$		$4.48 \pm 0.30^{+0.19}_{-0.19}$	$4.60 \pm 0.27 \substack{+0.11 \\ -0.13}$	
HFAG [39] 4.4	$40 \pm 0.15^{+0.19}_{-0.21}$	$4.39 \pm 0.15 ^{+0.12}_{-0.20}$		$4.03 \pm 0.13^{+0.18}_{-0.12}$	$4.45 \pm 0.15^{+0.15}_{-0.16}$	

- Significant advances in experiment (phase space in inclusive decays, B $\rightarrow D^{(*)} \pi \pi I v$ decays, B $\rightarrow \rho/\omega Iv$, decays into $\tau...$) more expected: LHCb now and Belle II from 2016
- Significant reduction of LQCD errors (& new non recoil calculations) and LCSR errors
- NP always more constrained
- $|V_{ub}| |V_{cb}|$ discrepancy still confirmed