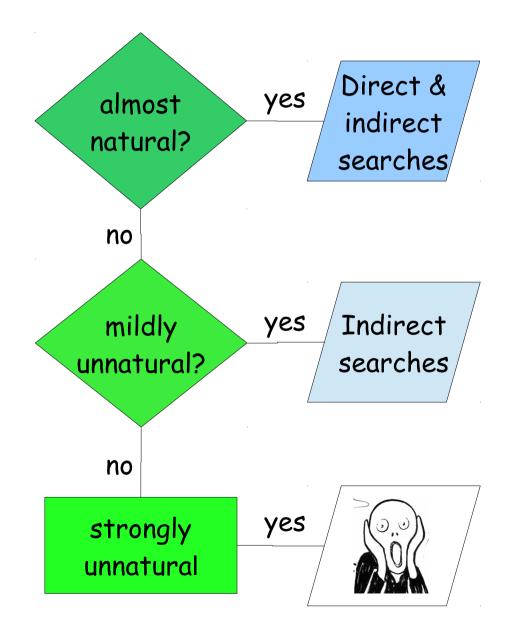
Impact of Future Experimental Scenarios on Flavour Physics

Luca Silvestrini

INFN, Rome

- Introduction
- What can we learn from the "ballistic" program
- First ideas on the impact of extreme flavour
- Conclusions and Outlook


INTRODUCTION

- Most of the discoveries of the past 45 years anticipated by arguments or indirect evidence:
 - Ioffe&Shabalin, GIM: NP (charm) @ GeV
 - Unitarization of Fermi theory: NP at 10²
 GeV
 - KM: 3rd generation
 - Flavour, EW fit: m₊~170 GeV
 - EW fit: m_{H} =100±30 GeV

INTRODUCTION II

- Now we are left with arguments only:
 - Hierarchy problem: NP close to EW scale
 - WIMP miracle: NP close to EW scale
 - gauge coupling unification: NP (SUSY) close
 to EW scale
- In parallel with increasing the energy probed by direct search, seek for indirect evidence!

How much "natural" is Nature?

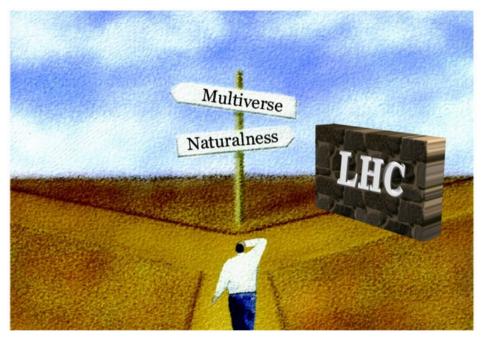
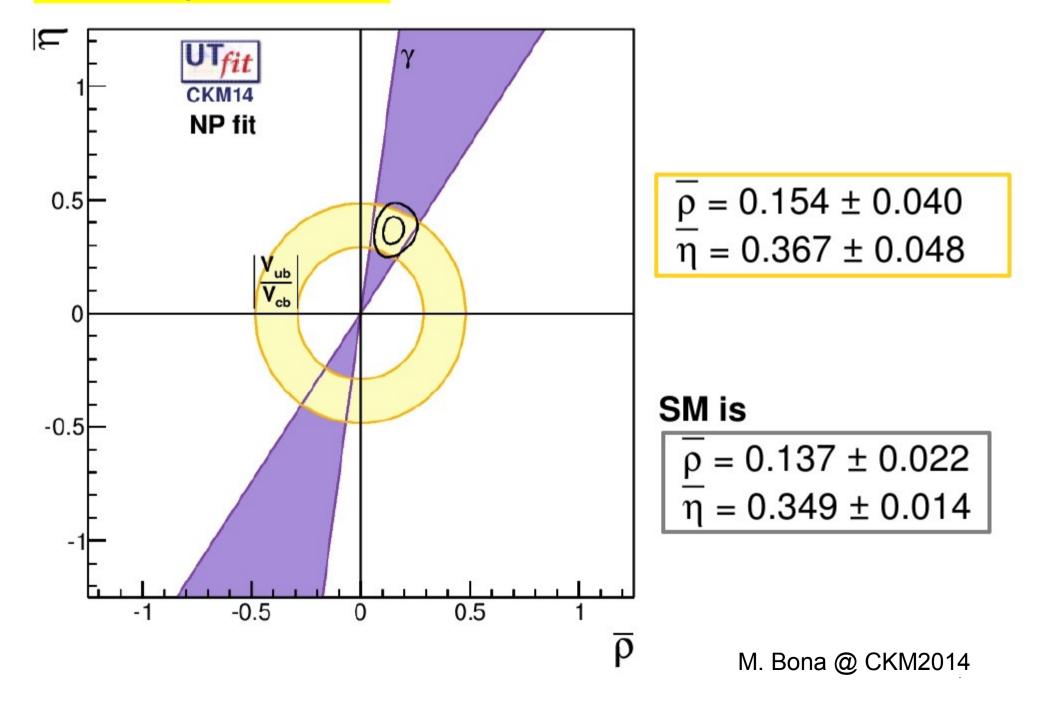


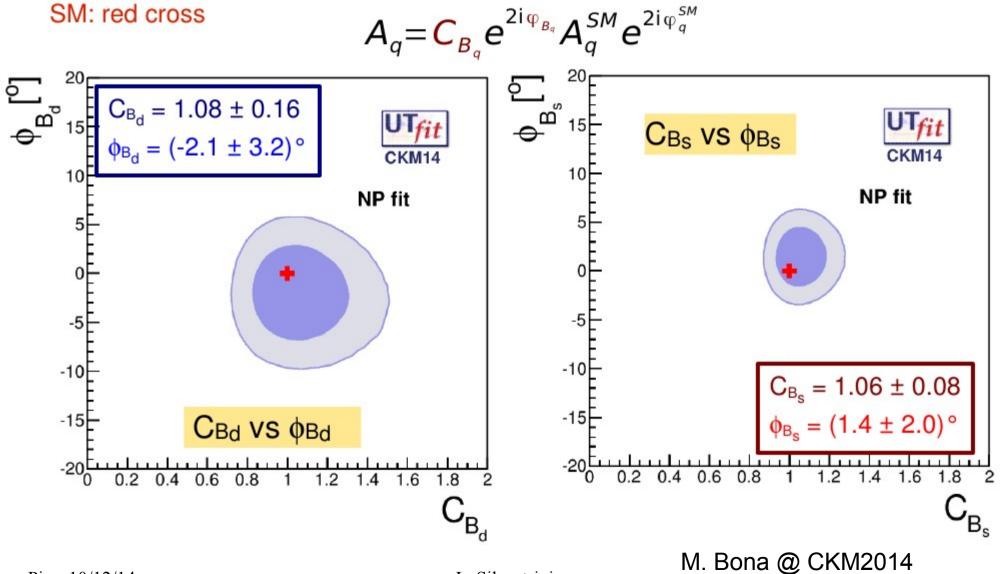
illustration by G. Villadoro

Courtesy of Marco Ciuchini

ROLE OF FLAVOUR

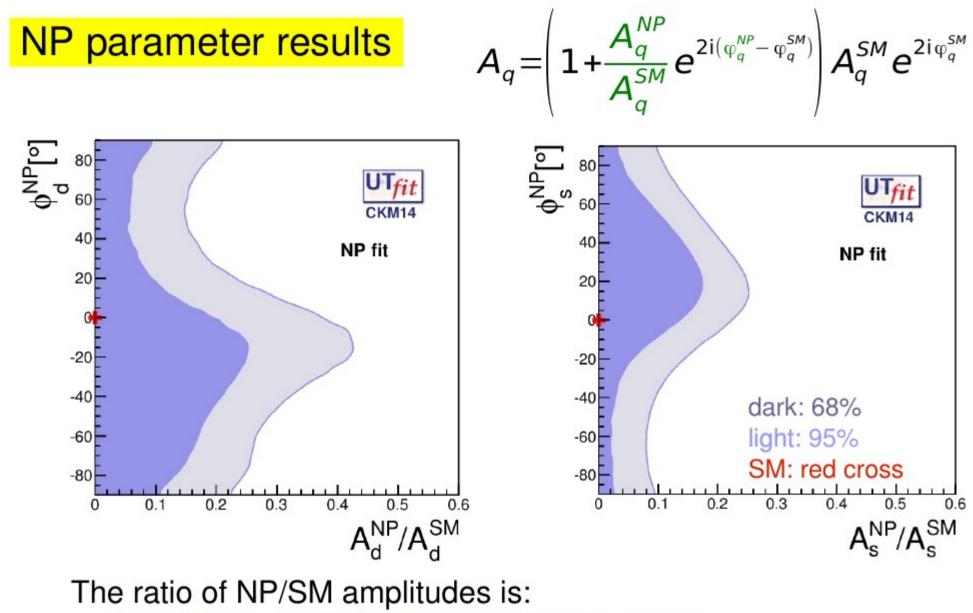

- In the framework of future experimental developments, Flavour physics should:
- Guarantee that the flavour structure of any directly discovered NP can be efficiently probed, and/or
- Push the NP scale that can be indirectly probed up by (at least) one order of magnitude

• A generic FCNC amplitude has the form $A_{SM} + A_{NP} = K_{SM} \frac{\alpha_W}{4\pi} \frac{F_{CKM}}{M_W^2} + K_{NP} L \frac{F_{NP}}{\Lambda^2}$


where L is a possible loop factor, F_{NP} denotes the NP flavour coupling and $K_{SM,NP} O(1) \# s$.

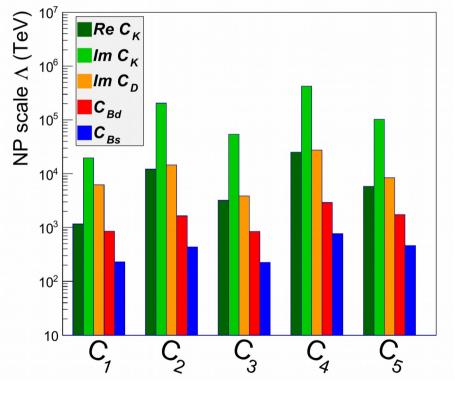
- For any directly observed NP, we know Λ and L and can extract $F_{_{NP}}$
- Assuming a value for $L \ge \alpha_w / 4\pi$ and $F_{NP} \ge F_{SM}$, we can extract the NP scale Λ
- Need to improve A & A SM (where present) Pisa, 10/12/14

NP analysis results



NP parameter resultsK systemdark: 68% $C_{\epsilon_{K}} = 1.07 \pm 0.16$

light: 95%

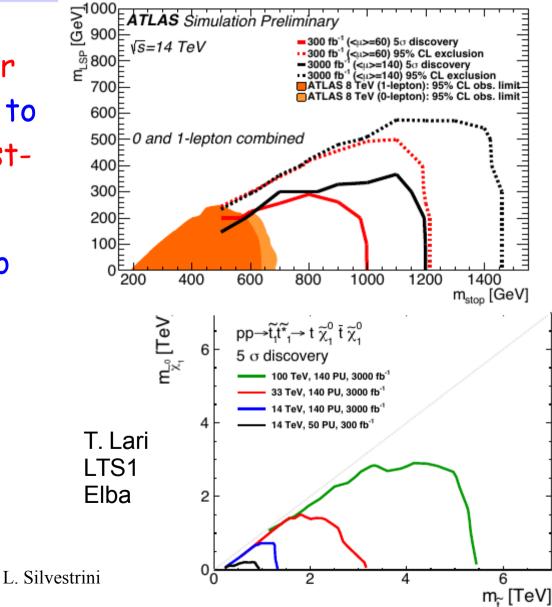

L. Silvestrini

< 25% @68% prob. (42% @95%) in B_d mixing < 17% @68% prob. (25% @95%) in B_s mixing

PRESENT BOUNDS ON NP

Bounds from $\Delta F=2$ processes

 $\Delta F\text{=}2$ processes scale as $1/\Lambda^2$


- Best bound from $\boldsymbol{\epsilon}_{\rm K},$ dominated by CKM error
- CPV in charm mixing follows, exp error dominant
- Best CP conserving from Δm_{κ} , dominated by long distance
- B_d and B_s behind, error from both CKM and Bparams

INTERPRETING THE BOUNDS

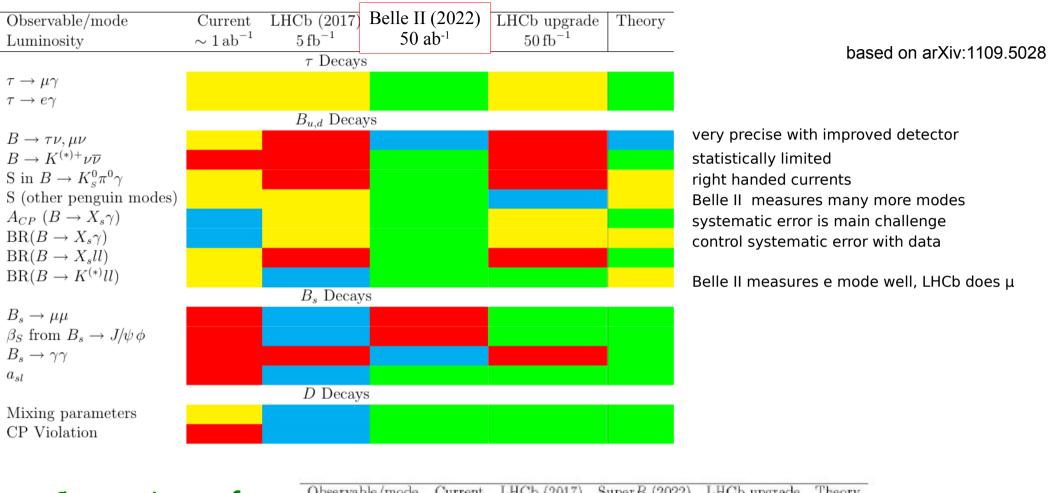
- generic case (no loop, no flavour suppression, all chiral structures): Λ>4.2 10⁵ TeV
- Extra-Dim case (no loop suppression, CKM suppression, all chiral structures): Λ>96 TeV
- MFV case (no loop suppression, CKM suppression, only left-handed): Λ>9 TeV
- weakly-interacting MFV case (EW loop & CKM suppression, left-handed): Λ>300 GeV

COMPLEMENTARITY WITH DIRECT SEARCHES

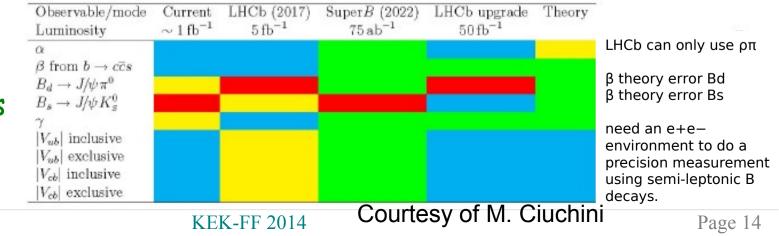
- The weakly-interacting MFV case provides a lower bound on NP contribution to flavour observables (worstcase scenario)
- This often corresponds to worst-case scenarios for direct searches as well
- Keep the two reaches in sync so that we can see flavour effects of any directly visible NP
 Pisa, 10/12/14

BALLISTIC FUTURE

- Belle II and LHCb upgrade will improve present precision/sensitivity in B, D and τ physics by a factor of 3-10 De Nardo, Lanfranchi
- NA62 will provide a 10% measurement of BR(K⁺ $\rightarrow \pi^+\nu\nu$), KOTO should observe K_L $\rightarrow \pi^0\nu\nu$
- MEG-II and Mu2e will improve the sensitivity on $\mu \rightarrow e\gamma$ to 6 10⁻¹⁴ and on $\mu \rightarrow e$ conversion to 6-7 10⁻¹⁷ Signorelli


Flavour Golden Modes

Experiment: Theory:


No Result Moderately precise Precise Moderately clean Clean, needs Lattice

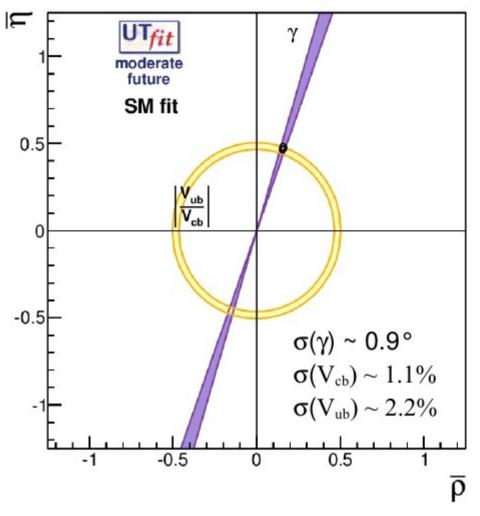
Clean ©A. Stocchi

Very precise

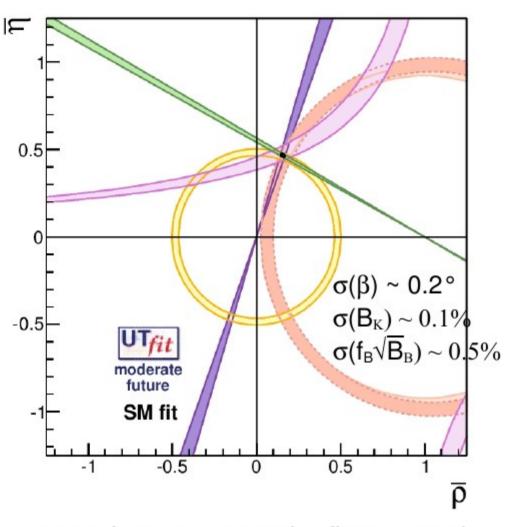
Comparison of present and future flavour experiments on "golden modes" (an incomplete list)

Marco Ciuchini

Precision flavour physics & theory uncertainties

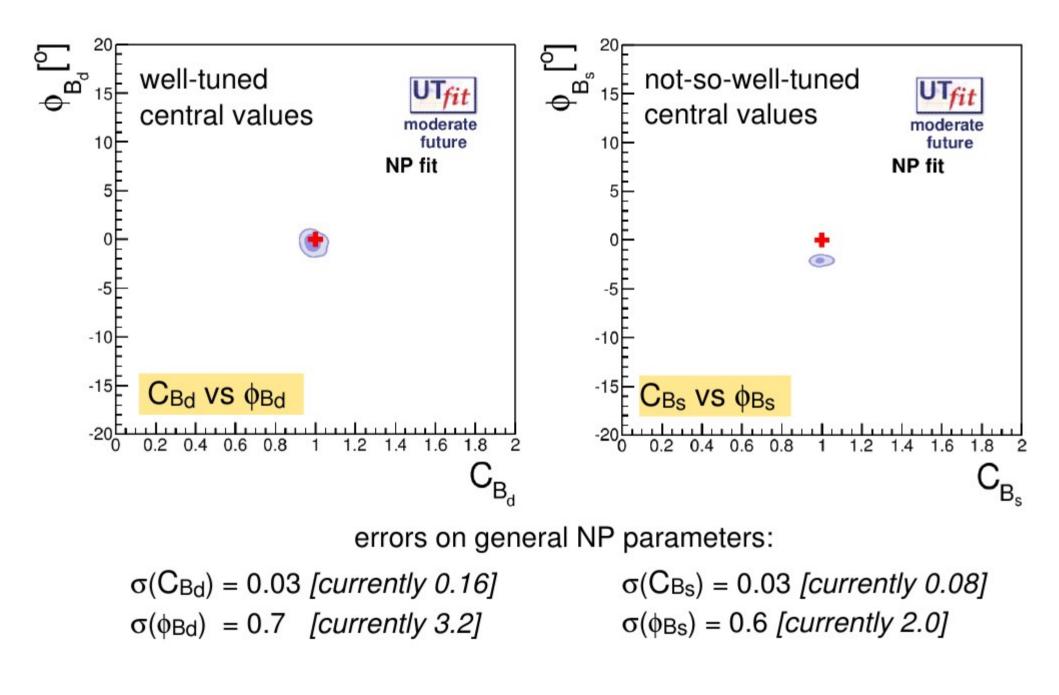

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, CPV in B→X _{s+d} γ, τ decays zero of FB asymmetry B→X _s l ⁺ l ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, $B \rightarrow D(*) Iv$, $B \rightarrow \pi(\rho) Iv$ $B \rightarrow K^* \gamma$, $B \rightarrow \rho \gamma$, $B \rightarrow Iv$, $B_s \rightarrow \mu \mu$	target error: ~1-2% Feasible
improved OPE+HQE	Β→Χ _{u,c} Ιν, (Β→Χ _s γ)	target error: ~1-2% Possibly feasible with large samples. Detailed studies required
improved QCDF/SCET or flavour symmetries	S from TD A_{CP} in b \rightarrow s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error
Marco Ciuchini	KEK-FF 2014	Courtesy of M. Ciuchini Page 15

Therefore, my tentative (INACCURATE!) estimates are:


Hadronic parameter	L.Lellouch ICHEP 2002 [hep-ph/0211359]	FLAG 2013 [1310.8555]	2025 [What Next]	
f ₊ ^{Kπ} (0)	- First Lattice result in 2004 [0.9%]	[0.4%]	[0.1%]	
Êκ	[17%]	[1.3%]	[0.1-0.5%]	
f_{Bs}	[13%]	[2%]	[0.5%]	
f_{Bs}/f_{B}	[6%]	[1.8%]	[0.5%]	
B _{Bs}	[9%]	[5%]	[0.5-1%]	
B_{Bs}/B_{B}	[3%]	[10%]	[0.5-1%]	
F _{D*} (1)	[3%]	[1.8%]	[0.5%]	C. Tarantin LTS1
B→π	[20%]	[10%]	[>1%]	Elba 2014

7

More unpredictable but more surprising progresses can occur for the observables that today are very difficult (or infeasible): $K \rightarrow \pi \nu \overline{\nu}, K \rightarrow \pi | I^+ | I^-, K \rightarrow \pi \pi, \Delta m_K$


errors from tree-only fit on ρ and η : $\sigma(\rho) = 0.008 [currently 0.051]$ $\sigma(\eta) = 0.010 [currently 0.050]$

errors from 5-constraint fit on ρ and η : $\sigma(\rho) = 0.005$ [currently 0.034] $\sigma(\eta) = 0.004$ [currently 0.015]

M. Bona @ CKM2014

L. Silvestrini

M. Bona @ CKM2014

L. Silvestrini

CHARM CPV EXTRAPOLATED

- SM contribution to ϕ_{M12} negligible, while one could envisage $\phi_{\Gamma12}$ O(1°) due to LD penguins
- Present fit:

- ϕ_{M12} = [-4,12]° @ 95% prob., no reach on $\phi_{\Gamma12}$ - Λ >3.5 10⁴ TeV

• LHCb upgrade / Belle II:

 $-\delta\phi_{M12} = \pm 1^{\circ} \text{ and } \delta\phi_{\Gamma12} = \pm 2^{\circ} @ 95\% \text{ prob.}$

- Λ>10⁵ TeV

Zupan

EXTREME FLAVOUR

- A very interesting possibility has been put forward: collect 100x the LHCb upgrade luminosity
- A detailed study of the impact of such possibility should be carried out to assess its full physics potential.
- I'll just briefly flash a few items to make you interested

ASSESSING THE IMPACT OF EXTREME FLAVOUR

- Determine expected exp and th uncertainties on the widest spectrum of observables
- Extrapolate accuracy in CKM determination in the presence of NP
- Assess the NP reach in all sectors and various scenarios

EXTREME UTA INPUT

Parameter	Error	comments
$\alpha_s(M_Z)$	$2 \cdot 10^{-4}$	
m_t	$250 { m ~MeV}$	theory limited
m_b	$10 { m MeV}$	imes 3 better
V_{us}	$1 \cdot 10^{-4}$	$\times 10$ better
V_{cb}	1%	Belle II
V_{ub}	1%	extreme baryons $+ B_s$
ϵ_K	0.4%	includes a 5% error on long distance $+$ dim. 8
B^i_K		$\times 10$ better
F_{B_s}	$1 { m MeV}$	
F_{B_s}/F_{B_d}	0.5%	
B_{B_s}	6%	
B_{B_s}/B_{B_d}	0.5%	
ΔM_d "	0.06%	
ΔM_s	0.01%	
$\sin 2eta$	0.06%	th. error from $B_d \to J/\psi \pi^0$
γ	0.09°	
ϕ_{B_s}	0.0004°	th. error to be investigated

EXTREME UTA (PRELIMINARY)

Parameter	SM fit error		NP fit error	
	now	extreme	now	extreme
$\bar{ ho}$	16%	0.4%	26%	1.5%
$ar\eta$	4%	0.1%	13%	1.4%
${ m Im}\lambda_t$	2.8%	0.8%	13%	1.4%
${ m Re}\lambda_t$	2.9%	0.8%	7.4%	2.1%
$\left V_{td}/V_{ts} ight $	2.3%	0.09%	5%	0.15%
C_{ϵ_K}	—	_	0.16	0.034
C_{B_d}	—	—	0.16	0.029
ϕ_{B_d}	_	_	3.2°	0.41°
C_{B_s}	_	_	0.08	0.028
ϕ_{B_s}		_	2.0°	0.023°

EXTREME BEYOND UTA

- D mixing, scaling LHCb upgrade estimates for $K_s \pi \pi$ and γ_{CP} , A_{Γ} :
 - $\delta \phi_{M12}$ = ± 0.1° and $\delta \phi_{\Gamma12}$ = ± 0.2° @ 95% prob.

- Λ >3 10⁵ TeV, close to the bound from ε_{κ}

• BR($B_d \rightarrow \mu^+\mu^-$)/BR($B_s \rightarrow \mu^+\mu^-$) @ ~4%, with much smaller theoretical uncertainty: very powerful probe of MFV

CONCLUSIONS

- In a global strategy for NP searches, improving the accuracy on FCNC and CPV processes has a key role to ensure that:
 - we are able to determine the flavour structure of any NP directly seen, and hopefully understand its origin; roughly 3x in $M_{NP} \Leftrightarrow 10x$ in exp & th $\Leftrightarrow 100x$ in L

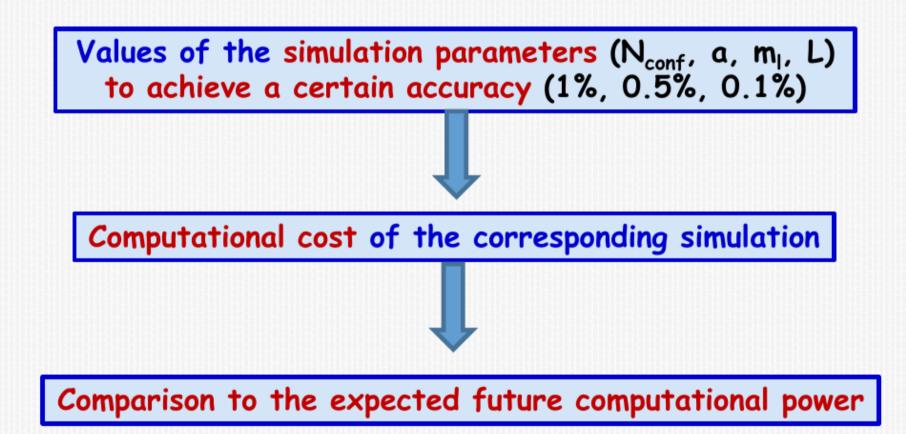
 we increase the sensitivity of indirect searches (flavour has the lead in this field) and maybe detect an indirect NP signal

L. Silvestrini

CONCLUSIONS II

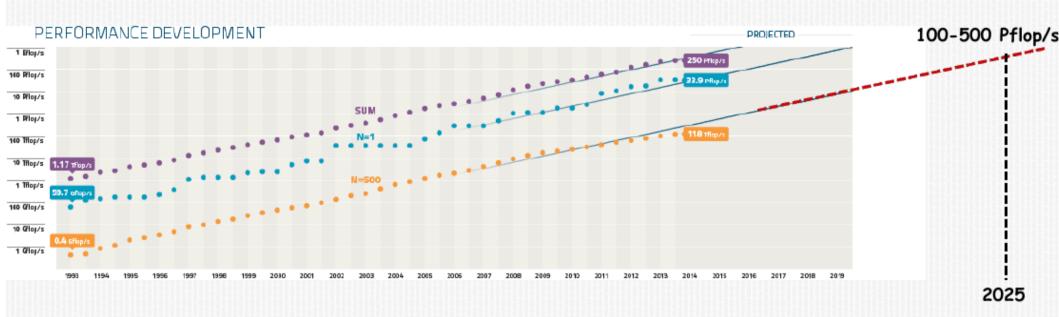
- Impact of "ballistic" flavour program studied in detail, expected improvements will keep indirect searches in sync with direct ones
- First steps to assess the impact of an extreme flavour experiment in progress:

- extrapolation of lattice errors (done)

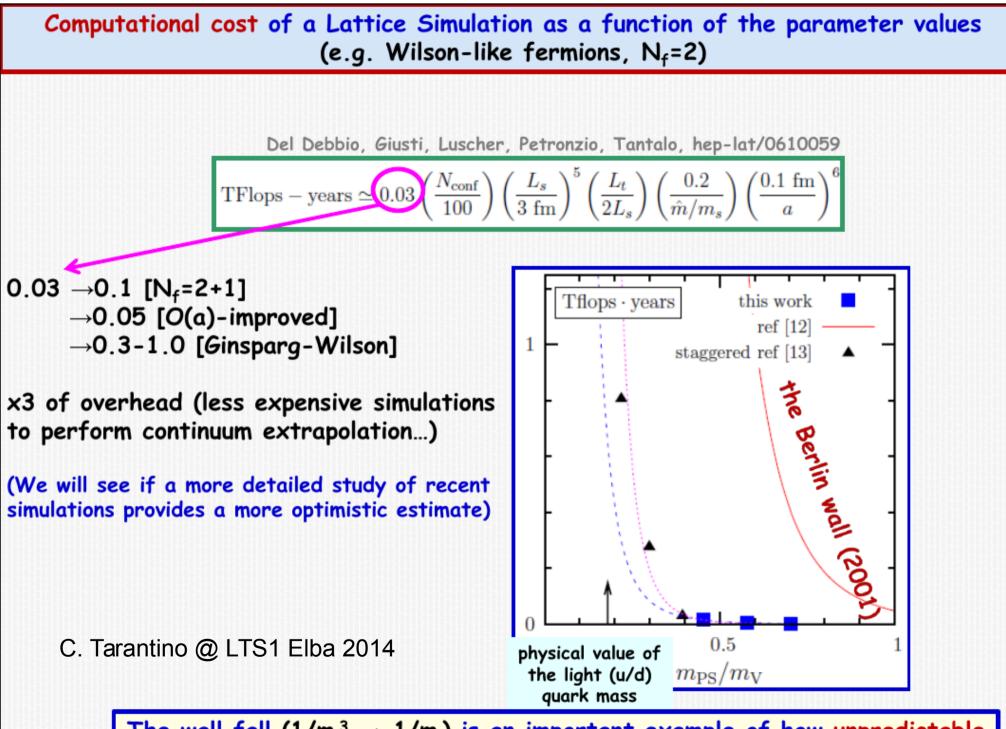

- prelim. estimate of exp. reach (in progress)

- projection of UTA (in progress)

- projection of NP sensitivities in all sectors


I follow Vittorio Lubicz's Appendix in the SuperB CDR (2007 -> 2015) (and Stephen Sharp's talk at Lattice QCD: Present and Future (Orsay, 2004))

C. Tarantino @ LTS1 Elba 2014


History (and prediction) of the computational power from Moore's Law (1965): The number of transistors on integrated circuits doubles approximately every two years (thanks to miniaturization)

Performance improvement of O(10³) every 10 years

Lattice collaborations typically have at hand per year a computational power similar to the 500° most powerful computer (0.1-0.5 Pflops-years in 2014 \rightarrow 100-500 Pflops-years in 2025)

C. Tarantino @ LTS1 Elba 2014

The wall fall $(1/m_1^3 \rightarrow 1/m_1)$ is an important example of how unpredictable (theoretical and algorithmic) developments can have a significant impact

EXP INPUT FOR CHARM MIXING

• LHCb upgrade:

- $\delta x=1.5 \ 10^{-4}$, $\delta y=10^{-4}$, $\delta |q/p|=10^{-2}$, $\delta \phi=3^{\circ}$ (from K_sππ); $\delta y_{CP}=\delta A_{\Gamma}=4 \ 10^{-5}$ (from K⁺K⁻)

• extreme (LHCb upgrade lumi x 100):

- $\delta x=1.5 \ 10^{-5}$, $\delta y=10^{-5}$, $\delta |q/p|=10^{-3}$, $\delta \phi=.3^{\circ}$ (from K_sππ); $\delta y_{CP}=\delta A_{\Gamma}=4 \ 10^{-6}$ (from K⁺K⁻)