MEG status

Marco Panareo

Lecce - 11/07/2014

Obiettivo dell'esperimento

L'esperimento MEG ha lo scopo di misurare il rapporto di decadimento

$$B = (\mu^+ \rightarrow e^+ \gamma) / (\mu^+ \rightarrow tot)$$

al livello di circa 10⁻¹³.

- Il modello standard prevede la conservazione del numero leptonico a tutti gli ordini. Anche includendo nel modello una massa dei neutrini diversa da zero, il nuovo modello prevede un rapporto *B* non accessibile sperimentalmente ($B < 10^{-40}$).
- Tuttavia alcune teorie di grande unificazione supersimmetrica prevedono un valore di *B* molto più grande (10⁻¹⁴ ÷10⁻¹¹). In questo senso MEG potrebbe fornire un utile contributo all'esplorazione della fisica oltre il modello standard.

□ 3 anni di run (2009-2011) hanno permesso di migliorare di un fattore 5 il limite superiore sul decadimento cercato $[(\mu^+ \rightarrow e^+ \gamma)/(\mu^+ \rightarrow e^+ \nu \nu)]$ al 99% C.L.

2009	\rightarrow	9.6×10 ⁻¹²
2010	\rightarrow	1.7×10 ⁻¹²
2009+2010	\rightarrow	2.4×10 ⁻¹²

La presa dati della prima fase dell'esperimento è terminata nell'agosto 2013, con un raddoppio della statistica rispetto al campione utilizzato per l'ultimo risultato summenzionato. La sensibilità finale della prima fase dell'esperimento dovrebbe essere all'incirca di 4÷5 ×10⁻¹³

10/07/2014

Upgrade

- L'upgrade di MEG ha l'obiettivo di migliorare di un fattore 10 la sensibilità dello spettrometro.
- L'upgrade prevede
 - Sostituzione del tracciatore con una DC a volume continuo
 - Sostituzione dei PMT della faccia più interna del calorimetro LXe con SiPM (array di PMT da 1" quadrato), per migliorare la risoluzione nella posizione di arrivo del γ
 - Realizzazione di un bersaglio attivo con fibre scintillanti singolarmente accoppiate a una matrice di SiPM, per migliorare la risoluzione nella posizione di arresto/decadimento del µ
 - Uso di SiPM per la lettura degli scintillatori del TC (aumenta la risoluzione temporale, aumenta l'efficienza, riduce il pileup)

Time Line of Upgrade

Updated schedule

- Il completamento del sistema di filatura è in^a un punto critico
- La milestone Ready for assembly è ritardata di circa 2 mesi:
 - L'inizio della filatura è previsto per la fine di Settembre
 - Trasferimento della camera a PSI per Agosto 2015

Wiring robot parts procurements

- □ Recycling parts from Mu2e prototype wiring robot: rotating axis, translation axis, torquemeter, e.m. friction, e.m. brake, digital microscope, monitoring system → done
- $\Box \quad \text{Table} \rightarrow \text{done, need to be machinered}$
- □ Winding drum → done, need to be machinered
- □ Soldering system → **design in progress**
- □ Wire trays transport system → design in progress
- New mechanical supports → done, need to be machinered

Glide for wiring and soldering

Connections

The cRIO is used for the control of the wiring machine because it can rely on the robust real-time system for the control of the operations.

Test of the digital camera

Test of the soldering system

PCB Catodes

PCB Anodes

anode 00

anode 09

Front End Electronics

ADA4927 - Ultralow Distortion Current Feedback Differential ADC Driver

- -3 dB bandwidth of 2.3 GHz
- 0.1 dB gain flatness: 150 MHz
- Slew rate: 5000 V/µs, 25% to 75%
- Fast 0.1% settling time: 10 ns

THS4509 - Wideband, Low-Noise, Low-Distortion, Fully-Differential Amplifier

- -3 dB bandwidth of 1.9 GHz
- Slew rate: 6600 V/µs

1% Settling Time: 2 ns

Power: 50mA @ ± 2.0V

Total power ~ 380W

Single channel prototype (used to test bandwidth and HDMI / Amphenol SS-SC connector/cable)

0

10/07/2014

- 0

Output cable

NUMBERS CLOCKED IN EACH LAYER, NUMBERS FACING OUT

ELECTRICAL

INPEDANCE:	100 ± 5 Ω (DIFFERENTIAL TDR)
CAPACITANCE:	42 pF / N NOMINAL
PROP DELAY:	4.25 ns / W NOMINAL
Skew (Within Pair	R): $\leq 100 \text{ ps} / 10 \text{ W}$ (TDT WETHOD, DRAN GROUNDED)
	(DIFFERENTIAL 50%-50%, TEKTRONIX TDS-8000 OR 1180
SKEW (PAIR/PAR):	\leq 400 ps / 10 W (TDT METHOD, DRAINS GROUNDED)
	(DIFFERENTIAL 50%-50%, TEKTRONIX TDS-8000 OR 1180
ATTENJATION (MA)	(NUM): 0.61 dB / N 🛛 625 NHz (0.57 dB TYPICAL)
	0.91 dB / N @ 1250 NHz (0.84 dB TYPICAL)
	1.37 dB / W 🛛 2500 WHz (1.24 dB TYPICAL)
	2.20 dB / W O 5000 WHz (1.96 dB TYPICAL)
SHELD ISOLATION:	overall shields isolated from pair shields

Cable assembly: miniSAS HD

Pre-emphasis implemented

Layout and card size

Steps toward the FE pcb

Mu2e – MEG prototype

Layout

- Length: 62.5 cm
- Nr of layers: 15
- Radius: 42.7 ÷ 52.3 cm
- Cell Width: 6.58 ÷ 8.04 mm
- Sense wire: 0.020 mm W
- Field wire: 0.040 mm Al
- Stereo angle: ± 0.20 rad
- Nr of Sense wire: 10 (8 readed)

Data Acquired

- 2 gas mixtures are been tested
- different positions respect to x, y and z axisis

Beam alignment with respect to the prototype

Cleaning room

Conclusion

- La milestone Ready for assembly è stata posposta di 2 mesi
- Si stima un completamento della macchina di filatura per la fine di settembre
- Da quella data iniziano I primi test di filatura che stimiamo si completino in circa un mese, seguirà la filatura definitiva e la trasmissione degli array di fili a Pisa
- Il montaggio si completa per Agosto 2015 quando la camera verrà trasferita da Pisa al PSI
- L'ordine dell'elettronica e dei cavi di trasmissione FE-DRS sarà completato entro l'anno

Lecce people

		MEG	FIRB
Chiarello Gianluigi	Dott	100	
Chiri Claudio	AssRic	100	
Grancagnolo Francesco	Ric	50	25
Maffezzoli Alfonso	РО	20	
Panareo Marco	PA	70	30
Pepino Aurora	Dott	100	
Tassielli Gianfranco	Ric	0	100
Zavarise Giorgio	PO	20	
тот		560	
Primiceri Patrizio	CTech	100	
тот		100	
1 Laureando			

EndPlates

External rings

□ Volume sealing:

Sealant in the small groove facing the carbon fibre support structure

Details

US inner extension

- Design modified accordingly to PSI requests
- Active volume length unchanged
- Total chamber length further reduced by 14 mm

