Relazione Coordinatore CSN3@LNF Consiglio Laboratorio Aperto 1 Luglio 2014 Alessandra Fantoni

	<u>Totali</u> :	41 FTE (Ric.+Tecn	ol.) + Tecnici
VIP	LNGS	Fisica: nucleare	6.5 FTE
	LNF	Fisica: nucleare	11.6 FTE
(p anda	GSI	Fisica: adr./nucl.	1.9 FTE
Bí	Bonn/Mainz	Fisica: adronica	1.2 FTE
elab12	Jlab	Fisica: adronica	9.0 FTE
ALICE	CERN	Fisica: QGP	10.8 FTE

3 sigle (su 6) con Responsabilità Nazionali INFN: PANDA, SIDDHARTA, VIP Numerose importanti responsabilità nazionali & internazionali

Nuclear Physics Exp. @ LNF in 2014

Funding 2014, SJ 2014 at the level of 1 kE

Exp	Res	Tec	FTE	MIS	CON	APP	INV		Other
ALICE	9.3	1.5	10.8	70	6			6	TRA/OTH
JLAB12	9	0	9	46	8	170		3	TRA/OTH
KAONNIS	8.4	1.9	10.3	21	69 5		39	3	MAN
MAMBO	1.2	0	1.2	9	7				
PANDA	2.6	0.3	2.9	22	20		7	1	TRA
VIP	5.0	0.9	5.9	19 2	28		16	7	MAN
DTZ	35.5	4.6	40.1	26	17		16	11	MAN/TRA/SEM

Alessandra Fantoni – CL preventivi 2015

A.Orlandi

A. Viticchié

0.5

0.5

LNF activities

12 researchers for 10.8 FTE Average participation of 90%

AL	ICE		Responsabilities: -	
1. 2. 3.	N. Bianchi L. Calero Diaz P. Di Nezza A. Fantoni	0.8 1 1	 2 Period Run Coordinators 1 System Run Coordinator (EMCAL) 1 HLT coordinator for EMCAL 1 calorimeter expert on call 	 Data taking & detectors
4. 5. 6. 7. 8.	P. Gianotti S. Liuti A. Moregula V. Muccifora	1 0.5 1 1 1	 1 calorimeters construction coordinator 1 ITS WG chair 1 deputy spokesperson in calo MB 1 member of the calo MB 	Management
9. 10. 11.	A.R. Reolon F. Ronchetti S. Sakai	1 1 1 (1 Heavy Flavour Physics conv @ CERN 1 spokesperson Jet Physics HP3 	Physics
12. Tecl	E. Spiriti	0.5	 Adjoint Technical Coord. for LS1 consolidat Run Coordinator in 2015 data taking 	ion in 2013-14

The activity of the LNF group: analysis

LNF main contributor to physics@LHC

1. LNF paper contribution in 2014

- Hadron-jet and recoil jet spectrum *upcoming publication [LNF primary author]*
- QGP review paper (300 pages, arXiv:1404.3723) submitted to EPJC [LNF co-primary author]
- Quenching by electron decay from Heavy Flavour quark, upcoming publication [LNF co-primary author]

2. Phenomenological studies of jet quenching

and first interpretation of LHC data Collaboration with Santiago de Compostela & LNF theory departments

3. Transverse Λ polarization in unpolarized pp scattering

 Λ reconstruction globally and in jets => First polarization measurement on TeV scale First link of GPDs and TMDs with LHC

Collaboration with Tufts University and University of Virginia

The activity of the LNF group: next data taki Adjoint Technical Coordinator for LS1 Consolidation

1. Detector consolidation

- Water cooling
- Timing
- Implementation sor/eor
- **Busy time**
- **FEE development**

2. Online Systems

- DAQ & ARC operations
- New ECS Status Dislay
- LHC interface operations

- Trigger update
- Configuration
- Gas system update
- See more on Ronchetti's talk at AW June 30° 2014 See more on Ronchetti's talk at AW June 30° 2014 https://imaterial/slides/1.pdf
- **3. Preparation for Data Taking**
- Improving running efficiencies
- DCS
- Shift Management
- **HI** operations

See more on Ronchetti's talk at AW June 30 + Jakon https://www.lindico.com.ch.lavant/221266/caccion/a/com

The activity of the LNF group: Calo

Lead-Scintillator Sampling Calorimeters Shashlik Geometry APD Photosensor

EMCal 10 + 2(1/3) super modules

Installation completed in 2013

DCal 6 + 2(1/3) super modules

Installation to be completed in LS1

Construction of the e.m. calorimeters (modules & strips) Sputtered fibers > 250k (at LNF) Online monitoring Offline codes HLT Commissioning ongoing for EMCal/Dcal/Phos Development for common Dcal/Phos jet trigger

The activity of the LNF group: ITS

Preparation for the new Inner Tracking System construction LNF as national production center for all ALICE INFN groups

Upgrade of the Inner Tracking System

LHCC Upgrade Cost Group rev. 03/03/2014 Research Board approval 12/03/2014 MOU due to the RRB → Ott '14 CERCALIECCANI-AGE 20 Filterary 2000

Technical Design Report

ALICE

for the Upgrade of the

ALICE Inner Tracking System

- Addendum roject Organisation, Cost Estimate and Schedule)

Contri	buto INFN	2013	2014	2015	2016	2017	2018	2019	Total
	R&D (kEUR) CORE (kEUR)	258	337+136	222 445	1040	935	400	80	953 2900
	Institute				Responsib	ilities			
	Bari	• (• [• F	DB Module dev • R&D, Mo Design of the E Module and Sta Power distribut	velopment odule 0, Pr nd of Stave ave test sys tion and su	and constr oduction e services stem (*) pply syster	uction n (pro-terr	ipore)		
	Cagliari	• (Chip design and Chip characteri	d character zation syst	rization em (*)				
	LNF	• L • (.NF Beam Test DB Stave produ	Facility Iction					
	Padua	• (Outer Layers Er	nd-wheels	and Half-la	yer Integra	ation		
	Turin/Alessandria	• ((• ()	Chip design and DB FPC and PB DB Stave develo R&D, Sta	d character opment ar ve 0	rization	tion			

Testati i primi pixel ALPIDE prodotti con misure di efficienza e studio della diversa struttura di readout

pALPIDEfs 1 Raw Hitmap

h_hitmap_pALPIDEIs_1

pALPIDEfs 0 Raw Hitmap

h_hitmap_pALPIDEfs_0

Curr. event: 17095 run: EUDAQ Online Monitor 1.3.0 pALPIDEfs_readout_june16 - Dolphin KDE Ret

Activity				Contributir	ng INFN teams	
Chip test and characterization			Bari, Cagliari, Cat Roma, Alessandr	tania, LNF, Pado ia/Torino, Tries	ova, ste	
Mechanic	s for Stave Cons	truction		Cagliari		
Pixel chip,	FPC and PB qua	alification and	d selection	Catania, Trieste		
SpTAB (interconn soldering)	ect technique k	backup wrt la	ser	Trieste		
			Timelin	Integration	۱, ing	High lumi Pb-Pb witł upgraded
Completi	on of R &D			at surface	<u>ع</u> ران	ALICE
		2016	2017		2019	
\bigcirc	\bullet	•	•		$\mathbf{\mathbf{Q}}$	\bullet
2014	2015	Produc constru tes	ction, iction, ts	2018	Installation in ALICE	2020 1

Richieste

Richieste finanziarie

missioni inventario (rich. ITS-Italia) consumo (rich. ITS-Italia)

Richieste ai servizi

88k	supporto esperimenti 1	2-18 mesi/u
140k	meccanica (tool ass. staves)	8 mesi/u
- 101. 60k	carpenteria (cam.pulita)	2 mesi/u
UUK	elettronica-automazione	5 mesi/u
	> 1 ingegnere meccanico	

Alessandra Fantoni – CL preventivi 2015

- 1. G. Angelini
- A. Biselli 2
- A. Courtoy 3.
- E. De Sanctis 4.
- D. Hasch 5.
- 6. V. Lucherini 0.5
- 7. M. Mirazita
- 8. R. Montgomery 1
- 9. S. Pereira
- 10. J. Phillips
- 11. S. Pisano

12. P. Rossi

Technicians: A. Orlandi 0.5 A. Viticchié 0.5

12 Physicists for 9 FTE Average participation of 90% 1 FTE technicians

Research activity & Responsibilities 0.5

______LNF activities

<u>1. Physics Analysis</u> => Study of parton distribution functions in exclusive and semi-inclusive</u> reactions with 6 GeV electron data:

Deeply Virtual Compton Scattering 0

- (laureando)

1

1

1

1

1

1

1

- Two-hadron semi-inclusive production S. Pisano & S. Pereira (data), A. Courtoy (theory)
- Λ polarization in semi-inclusive production Ο

J. Phillips (PhD thesis)

S. Pisano

- **2.** Hardware for upgrade => Preparation for 12 GeV running:
 - RICH detector for the CLAS12 spectrometer in Hall-B 0
 - Two proposals for new measurements submitted to PAC42: Ο
 - Semi-inclusive Λ electroproduction in the Target Fragmentation Region (Spokeperson M. Mirazita)
 - Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium (Spokesperson S. Pisano) Alessandra Fantoni – CL preventivi 2015

1. Physics analysis

- **Generalized Parton Distribution (GPD) functions**
- parton longitudinal momentum at a transverse position
- polarized beam and polarized target
 extraction of CFF of GPDs

Access to Higher Twist PDFs
simpler extraction of TMDs than in one hadron processes

TIME SCALE:

- June-September 2013: the project for the first sector has been approved by DOE
 It ab funds made available
 - JLab funds made available
- September 2013: PREMIALI CLAS-MED project approved
 - INFN funds for construction of the second sector
- End 2013 / Beginning 2014: start of construction phase
 - o MAPMT (JLab)
 - Aerogel (LNF)
- June 2014: review of the mechanical external frame by JLab Committee
- October 2016: Start of RICH assembly
- June 2017: end of RICH project (first sector)

Goal: ID of kaons vs π and p with momentum 3-8 GeV/c

2a. The RICH design: external frame

External structure in Al, closing panels in CFRP

- Reviewed with JLab engineers committee on June, 20
- All elements have been defined, analysis of the weight deformation and of the load on the supporting carriage performed
- Technical drawings underway
- Ready to start construction

Under LNF responsibility - D. Orecchini, S. Tomassini

2a. The RICH design: mirror

Manufacture Engineering Phase ongoing with companies in Italy and USA in contact with CERN laboratory for mirror characterization

S. Tomassini - G. Angelini (Thesis, RM1)

PLANAR GLASS MIRROR Planarity tolerance <= 0.1 mm Surface accuracy: 5 μm RMS Surface Quality: 3 nm RMS Reflectivity > 90%

• First prototype of the smaller submirror produced by MediaLario (Co) – optimization in progress

SPHERICAL CFRP MIRROR

Radius tolerance <= 1% Surface accuracy: 5 µm RMS Surface Quality: 3 nm RMS D0 < 5 mm Reflectivity > 90%

- mandrel produced by Marcon Telescopes (Vi)
- small prototypes produced by CMA (USA) and RiBa Composites (Faenza) – optimization of production and Alessandra Pantoni – CL preventivi 201 surface coating in progress

2a. The RICH design: FE electronics

The MAPMTs and the FE electronics is housed in a 1m² panel

- FE under INFN responsibility (Fe-Ge-ISS), readout developed by JLab
- Design of the components is almost done, first prototypes in production

Mechanical design of the system under LNF responsibility (D. Orecchini, S. Tomassini)

FPGA \rightarrow **DAQ** system

<u>Richieste e fondi esterni</u>

Richieste finanziarie

apparati+consumo+inventario missioni

Richieste ai servizi

officina meccanica 3 mesi/u progettazione apparati 8 mesi/u

HORIZON 2020

240k

85k

- TMD-neXt: 3D structure of the nucleon in momentum space: opening the next stage
- NextDIS: Challenges for Next Generation DIS facilities
- GPDology: Study of Generalized Parton Distributions

All proposals suffered strong cuts during the selection process

0.8

0.4

0.1

2 researchers for 1.2 FTE Average participation of 60% Total INFN ~14 FTE

- 1. P. Levi Sandri
- 2. D. Pietreanu
- A. Saputi (tech.)

- Nucleon excited states via meson photoproduction at MAMIc (Mainz) and ELSA (Bonn)
- Transition form factor
- International collaboration: Bonn PI, Bonn HISKP, Gießen, ISS, LNF, Messina, Pavia, Roma2, Torino, Glasgow, Basel, PNPI Gatchina, INR Mosca, IHENP Kharkov

Responsibilities:

- Co-spokesperson BGO-OD
- Analysis and MC coordinator

Activities:

Main interest in BGO-OD

- BGO (+ Roma2)
- Barrel (+ ISS)
- MRPC (+ Roma2)

Open Dipole + BGO calorimeter @ Bonn

Open Dipole -Drift chambers ToF 4 layers à 3x3 m² 8 double layers forward spectrometer 5x20x300 cm3 2.46 x 1.23 m³ δ < 300 µm Dipole magnet 2.2 x 3.9 x 1.5 m³ 94 t, Bmax~0.5 T MOMO 672 ch. x 2.5 mm, Ø 44cm SciFi2 640 ch. x 3 mm, 66 x 51 cm² Tagging system 120 ch. scint. bars MRPC 480 ch. scint. fibers 480 ch. x 1cm² Ø 14-43cm **BGO** calorimeter e- beam 480 ch., 0.9 x 4π MWPC - inner tracking Si strips - fw tracking (B8) Target system - LH2,LD2 Alessandra Fantoni – CL preventivi 2015

ELSA (Bonn) beamline S - Status

Responsabilità INFN:

- Commissioning calorimetro, barrell e bersaglio (LNF/RM1/RM2/ME).
 Schermatura per campo magnetico costruita ed installata, necessaria agli angoli in avanti (LNF).
- Test beam @ BTF: ottima linearità e ottima risoluzione in energia. Calibrazione con sorgente trasportabile ad alta energia (RM2/ME).
- Camere cilindriche (PV) installate inizio 2014, in fase di commissioning.
- MRPC in costruzione, trovata soluzione separatori. Supporto meccanico installato. Installazione rivelatore prevista fine 2014, inizio 2015.
- MonteCarlo in continuo sviluppo, generatore di eventi (LNF/ME/RM2)
- Coordinamento del gruppo di simulazione/analisi (LNF).
- Co-spokesperson dell'esperimento BGO-OD (LNF).

Programma 2014-2015

- Completare installazione e commissioning rivelatori in installazione e costruzione:
 - MRPC (Roma2/LNF) in costruzione
 - MWPC (Pavia) in installazione
 - Čerenkov in installazione
 - TOF (Bonn-PI) installato
- Prima presa dati in configurazione ridotta con bersaglio H (9 settimane Settembre-Dicembre 2014)
- Run in configurazione completa (con MRPC+Č) nel 2015 (12-20 settimane)

Richieste

Richieste finanziarie

missioni inventario 24k 8k

Richieste ai servizi

costruzione/installazione MRPC 1 m.u.

- 1. N. Bianchi
- 2. M. Bragadireanu 0.2
- 3. P. Gianotti
- 4. V. Lucherini
- 5. E. Pace
- 6. D. Pietreanu

- INFN National Responsible
- Physics Coordinator
- Tracking System Coordinator

6 researchers for 1.9 FTE Average participation of 32%

The European Physical Journal

volume 49 · number 2 · february · 2013

Activities:

PANDA Central Tracking System

0.2

0.5

0.5

0.3

0.2

- Complete Straw Tubes characterizations Gas mixture/overpressure/gain; HV working point; electronics
- Design of STT mechanical frame
- Prototype realization of CTM
- Services housing

electronics and gas distribution location, cabling

STT TDR in EPJA (2013) 49, 25 DOI: 10.1140/epja/i2013-13025-8

Straw Tube Tracker (STT) layout

PANDA central tracking detector has to fill a cylindrical volume with an internal radius of 150 mm, external one of 420 mm, and a length of 1500 mm.

- 4636 Straw tubes in 2 semi-barrels
- 23-27 planar layers in 6 hexagonal sectors
 - 15-19 axial layers in beam direction
 - 4 stereo double-layers with ±2.89° skew angle
- Time readout (isochrone radius)
- Amplitude readout (energy loss)
- $\sigma_{r\Phi}^{}$ ~ 150 (100) μm , $\sigma_{z}^{}$ ~ 3.0 (2.0) mm
- $\sigma_{\rm E}/{\rm E} < 8\%$ for $\pi/{\rm K}$ identification
- σ_p /p ~ 1 2% at B=2 Tesla
- X/X₀ ~ 1.2% (²/₃ tube's wall + ¹/₃ gas)

panda

24 ppm/°C

STT Mechanical Frame

LNF is responsible for the design of the mechanics:

- 2 Separate semi-barrels with end flanges, connected by spacer bars
- Flanges have precise holes to fix straw modules
- FEM analysis: 0.03mm max. deflection
- Inner & outer protection skins (~0.1% X/X₀ Kevlar)
- Mechanical frame weight: 2× 9 kg
- 11.6 kg Straw tubes (4636× 2.5 g) with
 - strong wire stretching (230 kg equiv.)
 - strong tube stretching (3.6 t equiv.)

Semi-barrel components for	FEM analys
2 End flanges	60 N
6 Connecting bars (4 needed)	30 N
2300 Straw tubes	60 N
Straw grounding, boards	20 N
Electronics, gas supply	110 N
Total weight	280 N
Material	Aluminum
Density	2.7 g/cm ³
Youngs modulus	70 GPa
Radiation length (X ₀)	9 cm

Alessandra Fantoni – CL preventivi 2015

Thermal expansion

Central Tracker Mechanics

panda

-The general design and the main dimensions are fixed;

- Preliminary mechanical solutions to support the target-beam cross pipe have been developed;

- O- Talan

-The preliminary structural calculations have been made with positive results;

- A full scale prototype has been realized in collaboration with Torino Group.

Alessandra Fantoni – CL preventivi 201

Present activity

presently working on services housing: electronics and gas distribution location, cable routing

PANDA - Status

- FAIR è entrata a pieno titolo nella fase di costruzione
- PANDA Italia si appresta ad iniziare la fase di costruzione del tracker con Straw Tube, del rivelatore di vertice e il bersaglio primario ipernucleare
- Piano finanziario prevede un investimento di ~ 5000 k€ in un periodo di 5 anni
- MOU in preparazione: l'INFN sarà chiamato a firmarlo entro la fine del 2014
- LNF: responsabilità meccanica STT. Richiesta ~200 k€ (sj MoU) per inizio costruzione

Richieste

Richieste finanziarie

missioni
costruzione apparati
consumo
trasporti

30k	Richieste ai serviz	<u>:i</u>
200k	supporto esperimenti progettazione apparati	12 mesi/u 4 mesi/u
2k	b. ogenerene abbaran	

Alessandra Fantoni – CL preventivi 2015

LNF activities

0.8

0.7

0.3

0.6

0.6

0.5

0.2

0.3

0.5

0.6

0.6

0.3

0.6

1

1

1

1

1. M. Bazzi

- 2. C. Berucci
- 3. A. Bragadireanu
- 4. A. Clozza
- 5. C. Curceanu
- 6. A. D'Uffizi
- 7. C. Guaraldo
- 8. M. Iliescu
- 9. P. Levi Sandri
- 10. D. Pietreanu
- 11. K. Piscicchia
- 12. M. Poli Lener
- 14. E. Sbardella
- 15. A. Scordo
- 16. H. Shi
- 17. D. Sirghi
- 18. F. Sirghi
- 19. I. Tucakovic
- 20. O. Vazquez Doce 0.4 •
- 21. J. Zmeskal
- F. Lucibello (tech) 0.5

20 researchers for 11.6 FTE Average participation of 58% Total INFN ~14 FTE

- KAONNIS= Low energy kaons interaction studies at Daone
- Integrated initiative (SIDDHARTA + AMADEUS)
- Precise measurement of kaonic atoms X-ray transitions
- International collaboration: INFN; SMI-OAW (Austria); IFIN-HH (Romania); Politecnico MI; MPE, TUM, PNSensors (Germany); RIKEN, Tokyo U. (Japan); Victoria U. (Canada); Zagreb U. (Croatia)
- EU HP3 support

Spokesperson + ALL Responsabilities in LNF

Publications:

- K⁴He first measurement ever in gaseous target
- 0.6 PLB 681 (2009) 310; NIM A628 (2011) 264; PLB 697 (2011); PhD
 - KH 400pb⁻¹, most precise measurement PLB 704 (2011) 113, NP A881 (2012) 88; Ph D
 - **K³He** 10 pb⁻¹, first measurement in the world PLB 697 (2011) 199; Ph D
 - **KD**: 100 pb⁻¹, exploratory first measurement ever NP A907 (2013) 69; Ph D
 - Widths and yields of K³He and K⁴He PLB 714 (2012) 40; NPA 914 (2013) 305; EPJ A 50 (2014) 91
 - Yields of low-Z kaonic atoms transitions NPA 916 (2013) 30

SIDDHARTA: important training for young researchers Alessandra Fantoni – CL preventivi 2015

KAONNIS (Integrated Initiative):

<u>Low-energy QCD in strangeness sector – unprecedented</u> <u>results!</u>

- SIDDHARTA data analyses and SIDDHARTA-2 experiment: kaonic atoms studies

- AMADEUS : kaon-nuclei interaction studies at low energies

- other collaborations related to strangeness physics (JPARC)
- support from European projects: HP3 (ongoing),
- ECT* Workshop 21-25 October 2013:

"Strangeness in the Universe? Theoretical and experimental progress and challenges"

-ECT* Workshop 27-31 October 2014:

"Achievements and perspectives in the low-energy QCD with strangeness"

SIDDHARTA2 strategy – phases

- 1) Kaonic deuterium measurement 1st measurement and R&D for other measurements
- 2) Kaonic helium transitions to the 1s level 2nd measurement, R&D
- 3) Other light kaonic atoms (KO, KC,...)
- 4) Heavier kaonic atoms measurement (Si, Pb...)
- 5) Kaon radiative capture Λ (1405) study
- 6) Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)
- 7) Kaon mass precision measurement at the level of <10 keV

SIDDHARTA2 setup (vs SIDDHARTA)

- new target final tests
- new SDD arrangement
- vacuum chamber final tests
- more cooling power
- improved trigger scheme
- shielding and anti-coincidence (veto)
- Assembly and tests

Use of new SDD detectors (FBK)

square SDD: 64 mm² meas. time: 72 hours ₃₂ T= 100 K Rate: 1.1 kcps

Alessandra Fantoni – CL preventivi 2015

Stategy for Kd measurement:

SIDDHARTA-2 setup is going to be ready in 2015 (compatible with financing)

We are confident that with an integrated luminosity of <u>600 pb⁻¹</u>, SIDDHARTA-2 will be able to perform a first X-ray measurement of the strong interaction parameters - the energy displacement and the width of the kaonic deuterium ground state, a <u>fundamental measurement in low-energy strangeness QCD.</u> Prepare for other measurements – SIDDHARTA-2 has a scientific program which could last about 2 years

A CLEAR DADNE TIME SCHEDULE IS MANDATORY !!!

Experimental program of AMADEUS

Unprecedented studies of the low-energy charged kaons interactions in nuclear matter: solid and gaseous targets (d, He³, He⁴) in order to obtain unique quality information about:

- Nature of the (elusive) Λ (1405)
- Possible existence of kaonic nuclei clusters (deeply bound kaonic nuclei states)
- Interaction of K⁻ with one and two nucleons
- Low-energy charged kaons cross sections for K momenta lower than 100 MeV/c (missing today)
- Many other processes of interest in the low-energy QCD in strangeness sector -> implications from particle and nuclear physics to astrophysics

119 scientists from 13 Countries and 34 Institutes

AMADEUS status:

- analyses of the 2002-2005 KLOE data -> publications
- Step 0 : Pure Carbon Target inside KLOE data taking in 2012, under analyses -> publ.
- R&D for more refined setup: trigger and active target
- in 2014: collaboration AMADEUS+KLOE for KLOE2 data taking and studies of future possible scenario and addings (hypernuclear...)

Richieste

Richieste finanziarie

missioni	25k
consumo	125k
inventario	40k
manutenzioni	12k

Richieste ai servizi

- elettronica e automazione 6 mesi/u
 - 6 mesi/u progettazione apparati costruzioni meccaniche
 - 8 mesi/u

LNF activities

0.4

0.2

0.4

0.5

0.4

0.4

0.2

0.4

1

1

12 researchers for 6.5 FTE Average participation of 54% Total INFN 5.8 FTE

Entries

Mean

RMS

9394

9.208

4.860

- 1. S. Bartalucci
- 2. A. Clozza
- 3. C. Curceanu
- 4. K. Piscicchia
- 5. E. Sbardella
- 6. D. Sirghi
- 7. F. Sirghi
- 8. H. Shi
- 9. L. Sperandio
- 10. O. Vazquez Doce 0.6
- 11. A. Pichler
- 12 J. Marton

- VIP=Violation Pauli Exclusion Principle (PEP)
- Perform experimental test of PEP for e⁻ with a clean method
- Located at LNGS to reduce X-ray background
- International collaboration: LNF, LNGS, Ts INFN; SMI-OAW (Austria); IFIN-HH (Romania); Neuchatel U. (Switzerland)
- VIP already established a probability of PEP violation $\beta^2/2 < 4 \times 10^{-29}$ previous limit <1.7×10⁻²⁶ PLB 328 (1990) 438

200

VIP upgrade (CCD detectors replaced by SDD)

ALL Responsabilities

Previous limit improved by 3 orders of magnitude International Journal of Quantum Information 9 (2011) 145

Alessandra Fantoni – CL preventivi 20

Drawbacks of VIP:

- Reused an already done setup (DEAR experiment) limitations in many aspects: signal and background
- No timing (trigger) capabilities
- Limited energy (efficiency) range (30 μm)

VIP-upgrade:

- Use new detectors triggerable SDD
- 300 μ m more efficient in a broader energy range
- Design a new setup much more compact; higher acceptance (present one 2.8%) and lower background

Goal to gain a factor 100 VIP upgrade ready to be moved to LNGS

Upgraded VIP setup – tests at LNF

Upgraded VIP setup

- Detector ready to be moved to LNGS (problems with the impossibility to use sources for calibration, new rules....)
- Autumn 2014: start data taking with upgraded setup
- Expectation either to find a small violation or to be able to bound the probability that PEP is violated by electrons pushing it from about $4\cdot 10^{-29}$ to 10^{-31}
- Expected period of data taking: 3-4 years

Explore other type of physics – q.m.(collapse mod.predictions)

Richieste

<u>Richieste finanziarie</u>		Richieste ai servizi	
missioni	20k	elettronica-automazione	2 mesi/u
consumo	25k	progettazione apparati	2 mesi/u
inventario	12k	meccanica	4 mesi/u
trasporto	2k		•

Nuclear physics group involved in 6 international collaborations, inside LNF and outside

- Big LNF contributions in all 6 collaborations
- Several national and/or international responsibilities
- LNF Support for design and construction
- Relevant contribution of LNF technicians for construction and for upgrades

4.1 46th **SC Recommendations** <u>http://www.Inf.infn.it/committee/pdf/FindRec46.pdf</u> The SC is impressed by the strength of the LNF participation to CSN3 activities: the contribution of the LNF groups to the scientific production of the Nuclear Scientific Community is of primary importance. Each group went much over the threshold of the participation for a good visibility. The only concern is that there is a group waiting for PANDA. Backup

Alessandra Fantoni – CL preventivi 2015

ALICE Re-commissioning

S T A B

	2014/5	Critical Activity	System	Comment	
	Jan	LTU FW support 100 classes	СТР	Deployed	i –
	Feb	Local detector testing CDH v.3	ALL	Started	
	Mar	CDH v3 Aliroot	OFF	Gas pertubation	
	Apr	checklist for CDH v3 and FAST SOR/EOR mixed CHD v2 and V3 kit available LM board shipped end of month	all/jira Daq/off CTP	Cooling Perturb.	
	May	Shuttle Standalone Tests Restarted Online systems Operational	ALL	Cooling Perturb.	
	June	CTP 100 classes (old board) Run-Control Center Operational	DAQ/HLT/CTP	Standalone	
E X P E	July	New CTP LM board installed DCS/DAQ/CTP/HLT integration Global runs, Standalone runs (w/ global DAQ)	TPC,ALL	First tests with new TPC gas	G
T	August	Global runs / Shuttle tests	ALL	Mixed CDH	
D E T	September	Deploy LM logic in CTP	СТР	Start shift	A
	October	Technical rand with TRD LM logic	TRD, VO, TO	ivianagement	
H H	Nov (end of)	Technical runs with TRD LM logic RCU2/partial install	TPC ALICE	SECTOR TEST GG potential scan	R U N
T S	Dec (mid of)	RCU2/1-2 Sectors test HLT/Mixed Mode	TPC, H:T	B scan for ExB with comics and laser	S
3	January 2015	RCU2/Partial Commissioning	TPC, TRD	Machine Checkout Krypton Run	27

2015 Restart and pp Operation

2015 pp Operation at 50 ns

3 weeks between April and May: 1 fb⁻¹ delivered

 ALICE requests main-main collisions (at least as much colliding bunches as in 2011)

year	mode	$\sqrt{s_{\rm NN}}$ (TeV)	$\beta^{*}(m)$	α_{int} (µrad)	$\alpha_{\rm ext}$ (µrad)	colliding bunches
2011	pp	7	10	280	160	≤ 39

$$L = 10^{29} - 10^{32} Hz/cm^2 \rightarrow 10 - 600 kHz$$

Trigger configuration(s) under study : MB + RARE +...

→ See Trigger Coordination presentation by Ken Oyama on Wednesday

4.2: Development of assembly technology for monolithic pixel super-modules

4.2: Development of assembly technology for monolithic pixel super-modules

HALF STAVE ASSEMBLY JIG

- Alignment precision (position accuracy of the modules <10μm in the horizontal plane)
- Good thermal coupling to the cooling system.
- Reliable interconnection techniques.
- The base and rails: to put the module in position
- The alignment station: to handling and aline the modules
- The module box: to store, carry and prealign the modules
- The removable base: to accomodate the cold plate, to interconnect the modules and to position the bus cable

4.2: Development of assembly technology for monolithic pixel super-modules

• Tools for module gluing: test with glue and adhesive tape

• First test on (dummy-dummy) module handling and alignment

Stave Assembly - STATUS

STAVE ASSEMBLY PROCEDURE:

× First dummy half-stave in production:

- + 7 modules aligned
- + FPC-FPC connection under study
- + BUS soldering under study
- ★ stave
 - + Jigs design is almost finished,
 - + components procurement started
 - + ready by October

HALF STAVE ASSEMBLY PROCEDURE - NEW GLUING TOOL

- **×** NEW GLUING TOOLS (test will follow)
- + New metal masks
- + New tool for the glue leveling

S. COLI -JUNE/2014

STAVE ASSEMBLY -

THE JIG

- **x** Each half-stave will be
 - + taken with a handling tool (yellow in the drawing) equipped with vacuum
 - + rotated
 - + placed under the space frame
 - + aligned and fixed to the reference pins
 - + Glued to the space frame through U-legs

JUNE/2014

- **x** Each stave will be
 - + MEASURED
 - + Tested
 - + Stored/shipped in dedicated boxes S. COLI -

2.12 GeV running

The JLab upgrade

- increase of the beam energy from 6 to 12 GeV
- upgrade of the detectors in the 3 existing experimental Halls
- construction of the new experimental Hall D

CLAS12 in Hall-B

- Drift Chambers (DC) for momentum measurement
- Cerenkov (HTCC+LTCC) and calorimeters (PCAL+EC) for electron ID
- time-of-flight (TOF) measurement for pion and proton ID

PAC30 report (2006): Measuring kaon asymmetries is likely to be as important as pions..... The present capabilities of the CLAS12 design are weak in this respect and should be strengthened replace one LTCC sector with a RICH

Alessandra Fantoni – CL preventivi 2015

2a. The RICH design

RICH components

- aerogel radiator
- MAPMTs for photon detection
- spherical and planar mirrors to reduce the area of MAPMTs
- integrated electronic readout

 Design of the internal structure of the RICH under LNF responsibility

S. Tomassini, D. Orecchini

 Collaboration with JLab and other INFN groups for the design of the Front End readout

G. Corradi

Alessandra Fantoni – CL preventivi 2014

Upgraded VIP setup

