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Random Walk--2-Dimensional

In a plane, consider a sum of  two-dimensional vectors with random 

orientations. Use phasor notation, and let the phase of each vector be random. 

Assume  unit steps are taken in an arbitrary direction (i.e., with the angle 

uniformly distributed in  and not on a lattice), as illustrated above. The 

position  in the complex plane after  steps is then given by

(1)

which has absolute square

(2)

(3)

(4)

Therefore,

(5)

Each unit step is equally likely to be in any direction (  and ). The 

displacements are random variables with identical means of zero, and their

difference is also a random variable. Averaging over this distribution, which has

equally likely positive and negative values yields an expectation value of 0, so

(6)

The root-mean-square distance after  unit steps is therefore

(7)

so with a step size of , this becomes

(8)

In order to travel a distance 
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Lévy flight

From Wikipedia, the free encyclopedia

A Lévy flight, named after the French mathematician Paul Pierre Lévy, is a type of random walk in 

which the increments are distributed according to a "heavy-tailed" distribution.

A heavy-tailed distribution is a probability distribution which falls to zero as 1/|x|!+1 where 0 < ! < 2

and therefore has an infinite variance. According to the central limit theorem, if the distribution were to 

have a finite variance, then after a large number of steps, the distance from the origin of the random 

walk would tend to a normal distribution. In contrast, if the distribution is heavy-tailed, then after a 

large number of steps, the distance from the origin of the random walk will tend to a Lévy distribution.

Lévy flight is part of a class of Markov processes.

Two-dimensional Lévy flights were described by Benoît Mandelbrot in The Fractal Geometry of 

Nature. The exponential scaling of the step lengths gives Lévy flights a scale invariant property, and 

they are used to model data that exhibits clustering.

This method of simulation stems heavily from the mathematics related to chaos theory and is useful in 

stochastic measurement and simulations for random or pseudo-random natural phenomena. Examples 

include earthquake data analysis, financial mathematics, cryptography, signals analysis as well as many 

applications in astronomy and biology.

See also

Figure 1. An example of 1000 steps of a Lévy

flight in two dimensions. The origin of the 

motion is at [0,0] and the x and y components 

of each step are independent and distributed 

according to a symmetric, centered Lévy

distribution with c = 1 and ! = 1.2. Note the

presence of large jumps in location compared

to the Brownian motion illustrated in Figure 2.

Figure 2. An example of 1000 steps of an 

approximation to a Brownian motion in two 

dimensions. The origin of the motion is at

[0, 0] and the x and y components of each step 

are independent and are distributed according to 

a symmetric, centered Lévy distribution with

c = 1 and ! = 2 which is equivalent to a

normal distribution with a variance of 2 and a

mean of zero.
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Vetri di Lévy

The random walk in normal diffusive materials has a gaussian
step-length distribution with average step length given by the mean
free path ,

‘~
1

Nsh i
ð1Þ

where s is the scattering cross-section and N is the density of scatter-
ing elements. The angle brackets indicate an average over the sample
volume. To permit Lévy flights, the material should give rise to a step-
length distribution with a heavy tail, decaying as26

P zð Þ?
1
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where P(z) is the probability of a step of length z and a is a parameter
that determines the type of Lévy flight. The parameter a can be shown
to be related to the superdiffusion exponent c by c 5 3 2 a, for
1 # a , 2 (ref. 7). The moments of this distribution diverge for
a , 2, which means that the average in equation (1) can no longer
be taken over the entire sample. However, Ns can still be interpreted
as the local scattering strength of the material.

Our samples were made by suspending titanium dioxide nanopar-
ticles in sodium silicate, together with a precisely chosen distribution
Ps(d) of glass microspheres of different diameters d. The total concen-
tration of titanium dioxide nanoparticles was chosen such that,
on average, about one scattering event takes place in the titanium-
dioxide-filled spaces between adjacent glass microspheres. The step-
length distribution is then determined by the density variations
induced by the distribution Ps(d) of the glass microspheres. We have
calculated that a diameter distribution Ps(d) 5 1/d21a is required to
obtain a Lévy flight with parameter a, and show this experimentally
below. Although with our method we can obtain a Lévy flight with any
value of a, we have chosen to work with a 5 1, because this is one of the
few cases in which the Lévy distribution has a simple analytical expres-
sion (namely that of the Cauchy distribution27). For all other details on
sample preparation and the derivation of the diameter distribution for
Lévy flights with parameter a, see Supplementary Information.

We made a series of samples of different thicknesses in the range
30–550 mm. This allowed us to record the thickness dependence of
the total transmission. To do so, a collimated He–Ne laser beam was
used incident on the sample on a spot of area 1 mm2. The total
transmitted light was then collected by means of an integrating
sphere. Total transmission in normal diffusive systems is known to

decay following Ohm’s law, which means that the transmission
depends linearly on the inverse sample thickness12. For superdiffu-
sion this can be generalized as follows, where A is a constant and L is
the thickness28:

T~
1
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Figure 2 | Thickness dependence of the total transmission. For
superdiffusion the transmission decays much more slowly than for normal
diffusion, and should follow a power law with exponent a/2. The dashed grey
curve shows the normal diffusive behaviour (a 5 2), whereas the black line is
a fit to the data with only a as free parameter. We obtain a 5 0.948 6 0.09,
which is very close to the expected value, a 5 1, for a lorentzian Lévy flight.
For very thick samples (550mm), optical absorption decreases the
transmission to slightly below the ideal curve. Error bars, s.d.
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Figure 3 | Spatial dependence of the transmission on the output surface.
a, Spatial distributions of the transmitted intensity for the Lévy samples
(top) and for normal diffusive samples of the same thickness (bottom). The
images were taken using a Peltier-cooled charged-coupled-device camera on
the output surface of the sample, which was illuminated from the front with
a focused (2mm-spot-size) He–Ne laser. The sample was placed between
crossed polarizers to make sure that any residual ballistic light was blocked.
The normal diffusive sample was made by using only sodium silicate and
titanium dioxide powder. In the Lévy case we can see that the transmission
profiles strongly fluctuate from one measurement to another, whereas in the
normal diffusive case they are nearly constant. b, Distributions of the radius
R (normalised to its average, ÆRæ)and total intensity I (normalised to its
average, ÆIæ) of the transmission profiles for the normal diffusive (blue) and
Lévy (red) samples. We can see that the very large fluctuations in the Lévy
case correspond to a broad distribution function of both the intensity and
radius of the transmission profile.
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Particle flights and sticking

sticking

flight

Weeks, Urbach, Swinney 

Physica D 97 (1996)
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Shlesinger, Klafter, Wong, J. Stat. Phys. (1982)

Probability distribution function for flight of length T

P(T)
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Solomon, Weeks, & Swinney 
Phys. Rev. Lett. (1993);

Weeks & Swinney, 
Phys. Rev. E (1998)

Divergent 2nd moment of P(T)
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Paul Lévy (1925-1960s):  mathematics
Shlesinger, Mandelbrot, Klafter, West (1980s):  theoretical physics
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Diffusione anomala

h|X(t)�X(0)|qi ⇠ t⌫(q) ν(q) =1/2  Gauss

 Rilevante in molteplici contesti 

 Esempi sia stocastici che deterministici 

 Tecniche analitiche per calcolareν(q)



556 CHAPTER 25. DETERMINISTIC DIFFUSION

Figure 25.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (Courtesy of T.
Schreiber)

not the best one to exemplify the theory, due to its complicated symbolic
dynamics. Therefore we apply the theory first to diffusion induced by a 1-d
maps in sect. 25.2and return to the Lorentz systems in sect. 25.4, after a

⇓PRIVATE
brief discussion of anomalous diffusion in sect. 25.3.

⇑PRIVATE

25.1 Diffusion in periodic arrays

The 2-d Lorentz gas is an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modeled by the motion of a point
particle in a plane bouncing off an array of reflecting disks. The Lorentz
gas is called “gas” as one can equivalently think of it as consisting of any
number of pointlike fast “light molecules” interacting only with the station-
ary “heavy molecules” and not among themselves. As the scatterer array
is built up from only defocusing concave surfaces, it is a pure hyperbolic
system, and one of the simplest nontrivial dynamical systems that exhibits
deterministic diffusion, figure 25.1. We shall now show that the periodic
Lorentz gas is amenable to a purely deterministic treatment. In this class of
open dynamical systems quantities characterizing global dynamics, such as
the Lyapunov exponent, pressure and diffusion constant, can be computed
from the dynamics restricted to the elementary cell. The method applies to
any hyperbolic dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂

of the dynamical state space M̂ by translates Mn̂ of an elementary cell M,
with T the Abelian group of lattice translations. If the scattering array has
further discrete symmetries, such as reflection symmetry, each elementary
cell may be built from a fundamental domain M̃ by the action of a dis-
crete (not necessarily Abelian) group G. The symbol M̂ refers here to the
full state space, i.e.,, both the spatial coordinates and the momenta. The
spatial component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics in M to diffusive properties of the
Lorentz gas in M̂.
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Gas di Lorentz

In questo sistema è 
presente sia diffusione 

normale (orizzonte finito) 
che anomala (orizzonte 

infinito)


