ATLAS

F. Tartarelli

CdS, 09/07/2014

ATLAS

 \Box 335 papers published (or submitted) at 06/07/2014

- Covering a wide spectrum of physics analyses: B-physics, Exotics (BSM), Higgs, Heavy Ions, Standard Model, SUSY, Top quark physics,...
- □ Using LHC Run I dataset: 4.5 fb⁻¹ @7TeV and 20.3 fb⁻¹ @8TeV
- \Box Data collected up to February 2013
- Run 2 starting early 2015 at 13 TeV pp center-of-mass energy, 25 ns bunch spacing, L=1x10³⁴ cm⁻² s⁻¹, about 100 fb⁻¹ expected
- □ Some ATLAS detector upgrades:
 - new pixel layer closer (3.3 cm) to the beam line (IBL) and a small radius Be beam pipe
 - □ fast track trigger at Level 2 (FTK)

CdS

3

ATLAS

 \Box Concurrent efforts in the collaboration:

- □ Finish RUN 1 analyses as soon as possible
- □ Prepare RUN2 (commissioning detector, software,...)
- Short review of recent analyses results with Milano involvement
- □ Performance studies:
 - □ Tau lepton reconstruction
 - □ Etmiss reconstruction
 - $\Box e/\gamma$ calibration
 - □ tracking
- □ Physics analyses:
 - Dark matter searches
 - □ SUSY searches
 - Higgs properties measurements
 - QCD prompt photon(s) production

Performance studies

🗆 Ταυ

- Attilio Andreazza co-convenor of tau working group (October 2013-October 2015)
- Studies of tau trigger performance with FTK using BDT techniques

Etmiss

"Reconstruction and Missing ET Performance in the ATLAS detector using proton-proton collisions at sqrt(s)=8 TeV"

 \Box Contact editor: Caterina Pizio, paper in preparation

Prepared recommendation for Etmiss in RUN2: reconstruct soft term from primary vertex tracks instead of topocluster+tracks (less sensible to pile-up contribution)

E/gamma calibration

 \Box Calibration of electrons and photons

- Leonardi Carminati co-convenor of e/gamma calibration group up to May 2014; now replaced by Ruggero Turra
- □ "Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data"
 - □ Contact editor: L. Carminati, to be submitted to Eur. Phys. J. C (2014)

- 1. MC-based MVA technique to determine calibration constants for $e/\gamma/converted \gamma$:

 - \Box Need a good estimate of material in front of calorimeter estimate using $E_1/E_2 \rightarrow$ new detector simulation improving on passive material description
- 2. Correction of specific non simulated effects: High-Voltage differences, electronic calibration,...
- 3. Layer intercalibration
- 5. Energy scale and resolution smearing using $Z \rightarrow ee$
- 6. Energy scale validated with $J/\psi \rightarrow$ ee and extrapolation to photon with $Z \rightarrow ee\gamma$

Provides also constrain on material to 2-5% X₀

1.8

2

22 24

m

1.2 1.4 1.6

Material integral up to L1

0.2 0.4 0.6 0.8

0

1

09/Jul/2014

Material integral up to L1

1 1.2 1.4

16

22 24

μl

02 04 0.6 0.8

 \Box Energy scale and resolution from $Z \rightarrow ee$

□ Improved uncertainty per bins (without crack region

$$1.2 < |\eta| < 1.8):$$

$$\Box \, \delta \alpha_{tot} \sim \text{few } 10^{-4}$$

$$\Box \, \delta \sigma_{tot} \sim \text{few } 10^{-3}$$

09/Jul/2014

11___

12 Physics analyses

Dark Matter searches

- Search for new phenomena in events with isolated photons and large missing transverse momentum at 8 TeV"
 - □ Contact editor: Donatella Cavalli, paper in preparation
- Looking for events with an energetic photon and large missing momentum as a signature of new physics:
 - □ Large extra dimensions (Graviton)
 - □ Dark matter (WIMPs)
 - \Box SUSY interpretation

SUSY

 \Box Search for stop/3rd generation squark production

- □ T. Lari convenor of 3rd generation squark group; coconvenor of whole ATLAS SUSY group for two years starting next October
- "Third generation squark workshop", 23-27 June
 2014, Milano
- "Search for direct top-squark pair production in final states with two leptons in pp collisions at sqrt(s)=8TeV with the ATLAS detector"
 Contact editor: F. Meloni, JHEP06(2014)124

Stop search

 \Box Large mixing effects can lead to mass eigenstate t_1 that is significantly lighter than the other squarks

 \Box naturalness \rightarrow mass O(1 TeV)

□ could be pair-produced with relatively large crosssections at LHC

Target final states containing exactly two isolated, high-pT leptons

Analysis

- Events with two isolated leptons (e, μ) with opposite charge, and two b-quarks, significant missing transverse momentum
- □ Analysis strategies target:
 - \Box Large C1-N1 mass splittings (> $M_{\rm W}$ bosons mass), cut based
 - □ Small C₁-N₁ mass splittings (< M_W bosons mass), t₁ three-body decay, cut based
 - \Box on-shell top $t_1 \rightarrow t + N_1$ decay mode, MVA

Leptonic m_{T2}

LEPTONIC STRANSVERSE MASS $m_{T2}^{\ell\ell}(\vec{p}_T^{\ell_1}, \vec{p}_T^{\ell_2}, \vec{p}_T) = \min_{\vec{q}_T^1 + \vec{q}_T^2 = \vec{p}_T} \left\{ \max \left[m_T \left(p_T^{\ell_1}, \vec{q}_T^1 \right), m_T \left(p_T^{\ell_2}, \vec{q}_T^2 \right) \right] \right\}$ **MAIN DISCRIMINANT:** m_{T2} computed from the momenta of the two leptons.

Hadronic m_{T2}

HADRONIC STRANSVERSE MASS $m_{T2}^{b-jet}(\vec{p}_T^{b_1}, \vec{p}_T^{b_2}, \vec{p}_T) = \min_{\vec{q}_T^1 + \vec{q}_T^2 = \vec{p}_T} \left\{ \max\left[m_T \left(p_T^{b_1}, \vec{q}_T^1 \right), m_T \left(p_T^{b_2}, \vec{q}_T^2 \right) \right] \right\}$ MAIN DISCRIMINANT: m_{T2} computed from the momenta of the two b-jets.

Multivariate Analysis

MVA discriminant (BDTG) based on:

 E_T^{miss} , $m_{\ell\ell}$, m_{T2} , $\Delta \varphi(\ell,\ell)$, $\Delta \Theta(\ell,\ell)$, $\Delta \varphi(\ell,E_T^{miss})$ and $\Delta \varphi(j,\ell)$

No signal observed: number of observed events consistent with SM expectations

- \Box Four decay modes are considered separately with 100% BR:
 - □ $t_1 \rightarrow t + N_1$ (7 TeV: [1,2,3], 8 TeV [4,5,6], where the t_1 is mostly right) □ $t_1 \rightarrow W + b + N_1$ (3- body decay for m(stop) < m(top) + m(N_1), 8 TeV [4,6]),

$$\Box t_1 \rightarrow c + N_1 [7]$$

 \Box t₁ \rightarrow f + f' + b + N₁ (4-body decay, 8 TeV [4,7]).

□ Papers

[1] <u>arxiv:1208.1447</u> (0 lepton 7 TeV)
[2] <u>arxiv:1208.2590</u> (1 lepton 7 TeV)
[3] <u>arxiv:1209.4186</u> (2 leptons 7 TeV)
[4] <u>arxiv:1407.0583</u> (1 lepton 8 TeV, 20/fb)
[5] <u>arxiv:1406.1122</u> (0 lepton + 5/6 jets 8 TeV, 20/fb)
[6] <u>arxiv:1403.4853</u> (2 lepton + jets + MET 8 TeV, 20/fb)
[7] <u>arxiv:1407.0608</u> (0 lepton + jets (c-jets) + MET 8 TeV, 20/fb)

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \overline{qq}, \overline{q} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{qz}, \overline{z} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{gz}, \overline{z} \rightarrow q \overline{q} \chi_{1}^{0} \\ \overline{gz}, \overline{z} \rightarrow q \overline{q} \chi_{1}^{0} \\ \overline{gz}, \overline{z} \rightarrow q q \chi_{1}^{-1} \rightarrow q q W^{\pm} \overline{\chi}_{1}^{0} \\ \overline{gz}, \overline{z} \rightarrow q q (\ell \ell / \ell v / v v) \overline{\chi}_{1}^{0} \\ GMSB (\ell NLSP) \\ GMSB (\delta NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GRAvitino LSP \\ \end{array} $	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau, + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 4.7 20.3 4.8 4.8 5.8 10.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. § med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ĝ 1.25 TeV ĝ 1.1 TeV ĝ 1.34 TeV ĝ 1.3 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}350\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}300\text{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{h}_{1}\tilde{c}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{light}), \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{inedium}), \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{medium}), \tilde{r}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{heavy}), \tilde{r}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}(\text{neatural GMSB}) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{k}_1^0){<}90GeV \\ & m(\tilde{k}_1^-){=}2m(\tilde{k}_1^0) \\ & m(\tilde{k}_1^0){=}55GeV \\ & m(\tilde{k}_1^0){=}55GeV \\ & m(\tilde{k}_1^0){=}1GeV \\ & m(\tilde{k}_1^0){=}1GeV \\ & m(\tilde{k}_1^0){=}200GeV, m(\tilde{k}_1^-){=}5GeV \\ & m(\tilde{k}_1^0){=}0GeV \\ & m(\tilde{k}_1^0){=}0GeV \\ & m(\tilde{k}_1^0){=}0GeV \\ & m(\tilde{k}_1^0){=}158GeV \\ & m(\tilde{k}_1^0){=}158GeV \\ & m(\tilde{k}_1^0){=}150GeV \\ & m(\tilde{k}_1^0){=}200GeV \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{1}^{-1} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{1}^{-1} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{2}^{-1} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell (\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu})) \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\ell}_{L} \tilde{\ell} \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\ell}_{1} \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{k}_1^0){=}0GeV \\ & m(\tilde{k}_1^0){=}0GeV, m(\tilde{\ell},\tilde{\nu}){=}0.S(m(\tilde{k}_1^+){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_1^0){=}0GeV, m(\tilde{\tau},\tilde{\nu}){=}0.S(m(\tilde{k}_1^+){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_1^+){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, S(m(\tilde{k}_1^+){+}m(\tilde{k}_1^0)) \\ & m(\tilde{k}_1^+){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, s(s)s(s)so(s)s(s)s(s) \\ & m(\tilde{k}_1^0){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, s(s)s(s)s(s){=}o(s)s(s_2^0){=}m(\tilde{k}_2^0), m(\tilde{k}_1^0){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.S(m(\tilde{k}_2^0){+}m(\tilde{k}_1^0)) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-Ilved particles	Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{q}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow q q \mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{k}_1^+)\!-\!m(\tilde{k}_1^0)\!=\!160 \; \text{MeV}, \ r(\tilde{k}_1^+)\!=\!0.2 \; \text{ns} \\ m(\tilde{k}_1^0)\!=\!100 \; \text{GeV}, \; 10 \; \mu \! s \! < \! r(\tilde{g}) \! < \! 1000 \; \text{s} \\ 10 \! < \! 10 \! s \! - \! 10 \! s \! \\ 0.4 \! < \! r(\tilde{g}_1^0)\! \! > \! 2 \; \text{ns} \\ 0.4 \! < \! r(\tilde{k}_1^0)\! \! > \! 2 \; \text{ns} \\ 1.5 \! < \! c \! r \! < \! 156 \; \text{nm}, \; \text{BR}(\mu) \! = \! 1, \; m(\tilde{k}_1^0) \! = \! 108 \; \text{GeV} \end{array}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \ \tilde{\mathbf{v}}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \ \tilde{\mathbf{v}}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\mathbf{X}}_1^{\dagger} \tilde{\mathbf{X}}_1^{\dagger}, \ \tilde{\mathbf{X}}_1^{\dagger} \rightarrow WX_1^{0}, \ \tilde{\mathbf{X}}_1^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_e \\ \tilde{\mathbf{X}}_1^{\dagger} \tilde{\mathbf{X}}_1^{\dagger}, \ \tilde{\mathbf{X}}_1^{\dagger} \rightarrow WX_1^{0}, \ \tilde{\mathbf{X}}_1^{0} \rightarrow \tau \tau \tilde{v}_e, e\tau \tilde{v}_{\tau} \\ \tilde{\mathbf{S}} \rightarrow qqq \\ \tilde{\mathbf{S}} \rightarrow \tilde{\mathbf{\eta}}_t, \ \tilde{\mathbf{I}}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \textbf{TeV} & \mathcal{A}_{311}^{\prime}=0.10, \mathcal{A}_{132}=0.05 \\ \mathcal{A}_{311}^{\prime}=0.10, \mathcal{A}_{1(2)33}=0.05 \\ \textbf{f} & \textbf{m}(\vec{q})=\textbf{m}(\vec{g}), cT_{LSP}<\textbf{I} \ \textbf{m} \\ \textbf{m}(\vec{k}_{1}^{\prime})=0.2\times\textbf{m}(\vec{k}_{1}^{\prime}), \mathcal{A}_{121}\neq 0 \\ \textbf{m}(\vec{k}_{1}^{\prime})=0.2\times\textbf{m}(\vec{k}_{1}^{\prime}), \mathcal{A}_{133}\neq 0 \\ \textbf{BR}(t)=\textbf{BR}(c)=0\% \end{array}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> ,μ (SS) 0	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M*scale 704 GeV	incl. limit from 1110.2693 $m(\chi) {<} 80 \text{ GeV, limit of} {<} 687 \text{ GeV for D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} = 3$ full of	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

09/Jul/2014

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

Higgs

 "Measurement of Higgs boson production in the diphoton decay channel with the ATLAS detector using 25 fb⁻¹ of proton-proton collisions data"

- Contact Editor: L. Carminati, to be submitted to Phys. Rev. D (2014).
- Studies of the spin of the Higgs boson in the diphoton channel with the ATLAS detector"

□ Contact Editor: M. Fanti, in preparation

□ "Measurement of the Higgs boson mass from the H → $\gamma\gamma$ and H → ZZ^{*} → 4I channels with the ATLAS detector using 25 fb⁻¹ of pp collision data"

Editor: L. Carminati, R. Turra, <u>arXiv:1406.3827v1</u>, submitted to Phys. Rev. D

Higgs Mass

□ Pre LHCP2014, ICHEP2014 ATLAS mass results:

- \Box Using 25 fb⁻¹ of data
- $\Box M_{H} = 125.5 \pm 0.2(\text{stat}) + 0.5 0.6(\text{sys}) \text{ GeV}$
- □ µ = 1.33+0.21−0.18
- □ Great effort to re-optimize analysis and reduce systematic error
 - \Box Great contribution to H $\rightarrow \gamma\gamma$ and H \rightarrow 4I from improved energy-scale calibrations for photons/electrons (and muons)
 - \Box $\gamma\gamma$ mass resolution better by 10% (uncertainty reduced by a factor 2)
 - □ Combine track momentum and cluster energy measurements to improve electron resolution

 \Box 20% for E_T < 30 GeV (ZZ \rightarrow 4I)

$H \rightarrow \gamma \gamma$ analysis

- Two isolated high-energy photons
 - Excellent mass resolution 1.2-2.4 GeV (1.7 GeV on average)
 - Good e/γ ID: 75% purity after cuts
- □ New wrt old analysis:
 - Background modelling using analytical functions
 - categories based on: photon conversion status, photon p_T, p_T, (di-photon p transverse to thrust axis)
- 20% improvement in exp. statistical error over inclusive analysis
- New electron and photon calibrations

$H \rightarrow \gamma \gamma$ mass measurement

 $M_{H} = 125.98 \pm 0.42$ (stat) ± 0.28 (sys) GeV = 125.98 ± 0.50 GeV [μ = 1.29 ± 0.30]

Old result: $M_{H} = 126.8 \pm 0.24$ (stat) ± 0.7 (sys) GeV [$\mu = 1.55 \pm 0.33 - 0.28$]

- Systematic uncertainties dominated by energy scale, reduced by factor of 2.5
- Statistical error compatible with expectation: 0.35 (0.45) GeV for μ=1.3 (1.0)
- Cross-checks:
 - Data divided into subsamples based on conversion status, number primary vertices and detector regions
 - No deviation above 1.5σ from fit of combined categories

Difference, Δ_i , between the mass measured in a given subsample and the combined mass:

CdS 09/Jul/2014

- Input for BDT variable:
 - **D** matrix-element kinematic discriminant, Higgs p_T and $|\eta|$ (8% improvement M_H uncertainty)
- \square M_H = 124.51 ± 0.52(stat) ± 0.06(sys) GeV = 124.51 ± 0.52 GeV
- \square $\mu = 1.66 + 0.45 0.38$
- □ Previous result:
 - **D** $M_{\rm H} = 12\overline{4.3 + 0.6 0.5(\text{stat}) + 0.5 0.3(\text{sys})\text{GeV}}$
 - **D** μ = 1.43+0.40-0.35

Combined mass

 \square M_H = 125.36 ± 0.37(stat) ± 0.18(sys) GeV = 125.36 ± 0.41 GeV

 \Box Previous result: $M_H = 125.5 \pm 0.2$ (stat)+0.5-0.6(sys) GeV

- \Box Total uncertainty reduced by 40%
- \square Systematic uncertainties reduced by factor 3
- □ Compatibility between channels:
 - \Box 2.0 σ (4.8%) for observed μ_{41} and $\mu_{\gamma\gamma}$
 - \Box 1.6 σ for μ = 1 (previous compatibility 2.5 σ)

Direct Higgs width measurement

Analytical m4l (non-relativistic Breit-Wigner) model convoluted with detector resolution with width $\Gamma_{\rm H}$ (M_H and μ free parameters)

D $\Gamma_{\rm H} = 4$ MeV at 125 GeV

- Analysis assumes no interference with background processes
- $\Box \quad H \rightarrow ZZ \rightarrow 4I:$
 - Event-by-event modelling of detector resolution
 - Validated by fitting mass peak for Z → 4l using convolution of detector response with BW for Z mass
 - 95% CL: Γ_H < 2.6 GeV (exp. limit
 3.5 GeV for μ = 1.7, 6.2 GeV for μ
 = 1)
- $\Box \quad \mathsf{H} \to \gamma \gamma:$
 - 95% CL: $\Gamma_{\rm H}$ < 5.0 GeV (expected limit 6.2 GeV for μ = 1)

Constraints on Γ_{H} from $\sigma_{H}^{\text{off-shell}}$

• High-mass $H \rightarrow ZZ$ (m>2m_z) provides strong constraints on Γ_{H}

- Kauer and Passarino, JHEP 1208 (2012) 116
- Caola and Melnikov, PRD 88 (2013) 054024
- Campbell, Ellis, and Williams, PRD 89 (2014) 053011
- CMS arXiv:1405.3455

$$\sigma_{off-shell}^{gg \rightarrow H^* \rightarrow ZZ} \propto g_{Hgg(off-shell)}^2 g_{HVV(off-shell)}^2$$

$$\sigma_{on-shell}^{gg \to H^* \to ZZ} \propto \frac{g_{Hgg(on-shell)}^2 g_{HVV(on-shell)}^2}{\Gamma_H / \Gamma_H^{SM}}$$

Assuming on-shell and off-shell couplings are the same:

$$\sum \frac{\sigma_{off-shell}^{gg \to H \to ZZ}}{\sigma_{on-shell}^{gg \to H \to ZZ}} \propto 1$$

G. Sciolla (Brandeis U.)

ICHEP 2014

ATLAS-CONF-2014-042

Differential cross-section for $gg \rightarrow (H \rightarrow)ZZ$

$\mu_{off-shell}$ from H \rightarrow ZZ \rightarrow 4l

- H→4l reconstruction as in arXiv:1406.3827
 - Define off-peak region as m_{4l} =[220,1000] GeV
- Matrix element (ME) kinematic discriminant
 - Using 8 kinematic variables to separate $gg \rightarrow H \rightarrow ZZ$ from $gg \rightarrow ZZ$ and $q\overline{q} \rightarrow ZZ$
- Max likelihood fit to ME discriminant; limits on μ_{off-shell} from CL_s method

ATLAS-CONF-2014-042

$\mu_{\text{off-shell}}$ from H \rightarrow ZZ \rightarrow IIvv

- Reconstruction as in PRL 112(2014)201802
 - 76<m_{ll}<106, MET>150 GeV
 - Veto on 3rd lepton to reject WZ; b-jet veto to reject top
 - $|p_T(Z) MET|/p_T(Z) < 0.3; \Delta \phi (MET, p_T^{miss}) < 0.5$ to reject top and Z+jets
- Off-peak region: m_T^{ZZ} > 350 GeV
- Limits on μ_{off-shell} from CL_s method

10

0.6

G. Sciolla (Brandeis U.)

0.8

Combined results

Combine 4I and 2ν 2I to fit $\mu_{off-shell}$ Include low-mass region (4I) to fit $\mu_{on-shell}$ • Assuming $g_{on-shell} = g_{off-shell}$ Ratio of $\mu_{on-shell} / \mu_{off-shell}$ yields Γ_{H} • Ratio of $\mu_{on-shell}$ / $\mu_{off-shell}$ yields Γ_{H} 95% CL limit on $\Gamma_{
m H}$ / $\Gamma_{
m H}^{
m SM}$ ATLAS Preliminary ± 2σ 35 2/2v+4l+4lon-shell combined Expected limit (CLs) Alternative hypothesis: Observed limit (CLs) $30 \vdash \Gamma_H / \Gamma_H^{SM} = \mu_{on-shell} = 1$ √s = 8 TeV: ∫Ldt = 20.3 fb⁻¹ 25 20 $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$ <5.7 15

2

2

 $R_{H^*}^{B} = \frac{K(gg \rightarrow ZZ)}{K(gg \rightarrow H^* \rightarrow ZZ)}$

$\Gamma_{\rm H}/\Gamma_{\rm SM}$	Observed	Expected $\mu = 1$
R _H ^B =0.5	4.8	7.0
R _H ^B =1	5.7	8.5
R _H ^B =2	7.7	12.0

15

m_H systematics

Table 4: Principal systematic uncertainties on the combined mass. Each uncertainty is determined from the change in the 68% CL range for m_H when the corresponding nuisance parameter is removed (fixed to its best fit value), and is calculated by subtracting this reduced uncertainty from the original undertainty.

Systematic	Uncertainty on m _H [MeV]
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr cell non-linearity (layer 2)	60
LAr cell non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low $p_{\rm Tt}$)	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

CdS 09/Jul/2014

$H \rightarrow \gamma \gamma$ categories

- 10 categories optimised to minimize expected mass measurement uncertainty:
 - converted and unconverted energy resolution better for unconverted photons, energy scale systematic uncertainties different
 - photon η :
 - * *central* region: both photons in central region, has best mass resolution and S-B ratio, smallest energy scale uncertainties
 - * *transition* region: at least 1 photon in transition region, has worse energy resolution due to material in front of calorimeter, larger E-scale uncertainties
 - * the *rest*
- *p_T* transverse variable: component of diphoton transverse momentum orthogonal to diphoton thrust axis in the transverse plane; high *p_{Tt}*: better S-B ratio and mass resolution, but small yield

Stransverse mass

This is a generalized transverse mass for systems with two invisible particles

SM EXAMPLE: top pair dileptonic decay

The lepton-neutrino transverse mass obeys on both sides:

$$m_T(l, \mathbf{v}) = \sqrt{2p_T(l)p_T(\mathbf{v})\left[1 - \cos(\varphi_l - \varphi_v)\right]} < m(W)$$
$$\max\left[m_T\left(p_T^1, \vec{q}_T^1\right), m_T\left(p_T^2, \vec{q}_T^2\right)\right] < m(W)$$

 The direction of the two neutrinos is unknown, but it's possible to try all possibilities and take the minimum.

$$m_{T2}\left(\vec{p}_{T}^{1}, \vec{p}_{T}^{2}, \vec{p}_{T}\right) = \min_{\vec{q}_{T}^{1} + \vec{q}_{T}^{2} = \vec{p}_{T}} \left\{ \max\left[m_{T}\left(p_{T}^{1}, \vec{q}_{T}^{1}\right), m_{T}\left(p_{T}^{2}, \vec{q}_{T}^{2}\right)\right] \right\}$$

m_{T2} < m(W) for top pairs, Wt and WW.

SIGNAL can extend to higher values, depending on the mass splitting of the involved particles

• A cut and count approach is sensitive to large $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$ or $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$

9

CdS 09/Jul/2014

Systematic Uncertainties

Experimental Uncertainties: JES, JER, SoftTerm, pile-up, b-tagging, JVF, etc.. comparison between MC@NLO and Top generator: Powheg+Jimmy comparison between Powheg+Pythia and *Top parton shower:* Powheg+Jimmy Top ISRFSR: AcerMC dedicated samples Diboson generator: compare Powheg vs Sherpa samples Fake lepton: limited statistics of the CRs discrepancy of the fake rate estimated from the different QCD control samples compare Sherpa vs Alpgen samples Z+jets generator: compare MC@NLO with AcerMC top + Wt interference:

Run2 TDAQ architecture

11

CdS 09/Jul/2014

40

Combination

(CMS-PAS-HIG-14-009)

• Signal strength modifiers for $(ggH,ttH) \rightarrow \gamma\gamma$, $(VBF,VH) \rightarrow \gamma\gamma$ and $H \rightarrow ZZ$ are not fixed to the SM expectation to get an estimate of m_H as much as possible model independent:

$$m_{H} = 125.03^{+0.26}_{-0.27} (stat)^{+0.13}_{-0.15} (syst) = 125.03^{+0.29}_{-0.31} (tot) GeV$$

- The measurements of the single channels have been checked to agree at the 1.6σ level.

Expected 14 TeV coverage

Looking forward for Run II with increased center of mass energy and increased luminosity.

Standard Model Total Production Cross Section Measurements Status: July 2014

Standard Model Production Cross Section Measurements

Status: July 2014

