SABRE (SODIUM IODIDE WITH ACTIVE BACKGROUND REJECTION)

- **G. FIORILLO (NAPOLI)**
- A. IANNI, C. MACOLINO, A. RAZETO (LNGS)
- D. D'ANGELO (MILANO)

SABRE

Designed to detect annual modulation in Nal.

- 1. Make use of new radio-pure Nal crystals
 - 1. Higher purity Nal powder than ever achieved
 - 2. Further purification during crystallization
 - Use low background methods (used in Borexino and DarkSide) in handling and processing
- 2. Make use of new low-background and high-QE photosensor.
 - PMTs R11065/20 (< 10mBq of gamma from U and Th) or upcoming.
 - 2. SiPM. Should be below 1mBq. To be tested.
- 3. Active Background rejection with liquid scintillator.
- 4. Make use of low radioactivity copper housing:
 - 1. U, Th $< \mu$ Bq/kg

THE DAMA/LIBRA MODULATION

Modulation

- 1 year period
- Peaked end of May
- WIMP signal peaked Beginning of June
- 9σ significance

Amplitude

- Peaked at ~3 keV_e
- Prominent in 2-6 keV_e

Remarks

- Detector makes use of an array of 250 kg high purity Nal (unique)
- Observation can be explained in the WIMPs framework
- Tension with other results (XENON, LUX, CDMS)
- Confirmation of DAMA results still missings

RADIO-PURE POWDER

4-year work (F. Calaprice, J. Benziger and A. Wright at Princeton Univ)

Purify precursors of Nal: Na₂CO₃

Present results:

Element	MV laboratories	Siga Aldrich "Astro-Grade"	DAMA powder
K	12ppb	3.5 ppb	<100ppb (13 ppb in crystal)
Rb	14ppb	0.2 ppb	not reported
Th	<200ppt ~ 3.5ppt*	<1700ppt <1ppt*	20ppt
U	<100ppt <1ppt*	<500ppt <1ppt*	20ppt

^{*} Preliminary by means of ICP-MS dilution method at PNNL

Decay Scheme of ⁴⁰K

10

Energy (keV

EC decay produces 1.46 MeV **g** and hole in ⁴⁰Ar K-shell, which then fills giving 3 keV X-ray/Auger electron.

SABRE WORK PLAN

- Test background rejection in liquid scintillator using DarkSide neutron-veto:
 - 1° deployment with standard Nal crystal scheduled end of summer
 - 2° deployment with high purity NaI by Seastar (Boston, USA) scheduled in Autumn.
 - 3° deployment with high purity NaI by SICCAS (Shanghai, China) to be scheduled.
- Make a demostrator to test final design
- Make SABRE detector

SABRE TEST IN DARKSIDE

- For 1st test TPC trigger turned over SABRE trigger.
- Coincidence with neutron-veto detector
- Nal crystal inside water Cherenkov and active scintillator shielding
- 3" diameter x 4" length cyclindrical Nal crystal

SABRE DEMONSTRATOR

One SABRE detector in an active veto

- Installed in DarkSide-10 water shield
- VETO based on LAB scintillator
- 4 high radiopurity PMTs (or SiPM).

The device will allow to

- Study the purity of different crystals
- Study the optical read-out
 - PMTs vs SiPMs.
- Minimize the threshold
 - Study PMT afterglow
 - Increase LY of Nal with low temperature.

USING SIPM

SiPMs exibts high QE

> 40-50 % (limited only by fill factor)

SiPMs exibit HIGH pe resolution

Up to 5 % (compared to 30 % from PMT)

Low dark rate at T < -50 °C

Better than 10 cps/mm²

Radiopurity to be tested

In principle can be very good: it is only high purity Si

Cryogenic amplifiers can be used to sum up all the cells

Radioclean electronics already available

LOW TEMPERATURE READ-OUT

We can use SiPMs
The Light Yield of
Nal(TI) increases
slightly ~10%

We can significantly lower the threshold

SiPM has no afterglow

SABRE DETECTOR

- Cylinder: 1.5 m x 1.5 m
- 2 tons LAB scintillator
- 10 8-inch PMTs
- Reflector in inner surface (>95%).
- Expected: 0.22 p.e./ keV
- Shielding: 25cm Pb
- Portable
- Minimum crystal array: ~50kg (7x8kg)

SABRE BACKGROUND SIMULATION

Based on radio-purity of NaI powder (after crystal gorwth one could reach lower background rate)

