NEWS: Nuclear Emulsion Wimp Search

F. Pupilli on behalf of Bari, Gran Sasso, Nagoya (Japan), Napoli

Outline

- Directional Dark Matter Searches
- The NEWS idea:
 a novel approach to directional detection of DM
- High Resolution Nuclear Emulsions: NIT
- Detection Principle
- NEWS R&D activity <u>update on neutron bkg</u>

Directional Dark Matter Searches

Earth revolution gives seasonal modulation

Due to solar system movement in the galaxy, the WIMP Flux is expected to be not isotropic @earth.

A directional measurement would provide a strong signature and an unambiguous proof of the galactic origin of DM

WIMP cross-section with nuclei $\propto A^2$

Directional Dark Matter Searches

Use solid targets:

- Large detector mass
- Smaller recoil track lenght O(100 nm) → very high resolution tracking detector

Nuclear Emulsion based detector acting both as target and tracking device

NEWS: Nuclear Emulsion WIMP search

Nuclear Emulsion

OPERA emulsion films:

Silver grain size ~ 200 nm → too large to record nanometric nuclear recoils

NIT emulsion films: Nano Imaging Trackers

Natsume et al, NIM A575 (2007) 439

Recent developments

Range distribution [nm]

Concept of readout: film expansion

T. Naka et al., NIMA581 (2007) 761

Concept of readout: scanning system

Two-step read-out:

- i. Pre-selection of candidate signal tracks with the optical microscopes
- ii. Final confirmation of signal with X-ray microscopy

Optical Readout

Automatic selection of candidate signals by optical microscopy. Full area scan. Resolution 200 nm, scanning speed 20 cm²/h

X-ray Readout

Pin-point check at X-ray microscope of candidate signals selected by optical readout. Resolution ~ 30 nm

Concept of readout:

step I, shape recognition

Test using 400 keV Kr ions

Direction detected!

Concept of readout:

step II, X-ray microscopy

X-ray microscope

Matching of recoiled tracks between Optical and X-ray microscope

Success rate of matching 572/579=99%

Concept of readout:

step II, X-ray microscopy

	angular resolution [degrees]		
optical microscope	31.4 +- 4.7 degree	@original range: 150-250nm	
X-ray microscope	16.8+-2.9 degree	@original range: 150-250nm	

Sensitivity

- Zero-background hypothesis
- 90% C.L.
- 100 nm tracking threshold
- directionality information not included

R&D activity

- NIT technology assessment
- Optical read-out system
- X-ray read-out system
- Neutron background estimation
- Angular resolution measurement, Neutron test beam
- Full MC simulation

R&D activity

- NIT technology assessment
- Optical read-out system
- X-ray read-out system
- Neutron background estimation
- Angular resolution measurement, Neutron test beam
- Full MC simulation

Intrinsic radioactive contamination

<u>Gelatin sample</u>	Contamination [ppb]	Activity [mBQ/kg]
Th	2.7	11
U	3.9	48

<u>PVA</u>	Contamination [ppb]	Activity [mBQ/kg]
Th	<0.5	<2
U	<0.7	<9

<u>AgBrI</u>	Contamination [ppb]	Activity [mBQ/kg]
Th	1	4
U	1.5	18

<u>Polystyrene</u>	Contamination [ppb]	Activity [mBQ/kg]
Th	0.019	0.08
U	0.009	0.11

Intrinsic radioactive contamination

Costituent	Mass fraction
AgBrI	0.813
Gelatin	0.1253
PVA	0.0617

Weighting by mass fractions (Polystyrene is negligible)

Total contamination from ²³⁸U: 1.75 ppb (21.6 mBq/kg) Total contamination from ²³²Th: 1.18 ppb (4.8 mBq/Kg)

Intrinsic neutron background

1) n from spontaneous fission

$$R = A \times \psi \times n$$

A = activity (decay/s)

 Ψ = fission probabiliy/decay

n = average number of neutrons/fission = (2.07 for ²³⁸U)

Element	Spontaneous Fission Rate		
	$[\mathrm{fissions}/g/s]$	${\rm fissions/decay}$	
226 Ra	0.6	2×10^{-11}	
$^{232}\mathrm{Th}$	5.72×10^{-8}	1.41×10^{-11}	
231 Pa	5×10^{-3}	3×10^{-12}	
$^{234}{ m U}$	9×10^{-3}	4×10^{-11}	
$^{235}{ m U}$	0.40×10^{-3}	5.0×10^{-9}	
$^{238}{ m U}$	6.78×10^{-3}	$5.45{ imes}10^{-7}$	

The only relevant contribution comes from ²³⁸U (the fission probability/decay is negligible for other elements)

2) (α ,n) reactions by α from ²³⁸U and ²³²Th chains

Doront	Daughter	Dogov	Engran	Half Life
гаген	Daughter	_		пан ше
		Mode	[MeV]	
$^{238}{ m U}$	$^{234}\mathrm{Th}$	α	4.27	$4.47 \times 10^9 \text{ yr}$
$^{234}\mathrm{Th}$	234 Pa	$oldsymbol{eta}$	0.273	$24.1 \mathrm{d}$
234 Pa	$^{234}\mathrm{U}$	\boldsymbol{eta}	2.20	$6.70~\mathrm{hr}$
$^{234}\mathrm{U}$	$^{230}\mathrm{Th}$	α	4.86	$2.45 \times 10^{5} \text{ yr}$
$^{230}{ m Th}$	226 Ra	α	4.77	$7.54 \times 10^4 \text{ yr}$
226 Ra	$^{222}\mathrm{Rn}$	α	4.87	$1.60 \times 10^{3} \text{ yr}$
222 Rn	218 Po	α	5.59	3.82 d
218 Po	$^{214}\mathrm{Pb}$	α	6.12	$3.10 \min$
$^{214}\mathrm{Pb}$	$^{214}\mathrm{Bi}$	$oldsymbol{eta}$	1.02	$26.8 \min$
$^{214}\mathrm{Bi}$	214 Po	$\boldsymbol{\beta}$	3.27	$19.9 \min$
214 Po	$^{210}\mathrm{Pb}$	α	7.88	$0.164~\mathrm{ms}$
$^{210}\mathrm{Pb}$	$^{210}\mathrm{Bi}$	$oldsymbol{eta}$	0.0635	$22.3 \mathrm{\ yr}$
$^{210}\mathrm{Bi}$	$^{210}\mathrm{Po}$	$\boldsymbol{\beta}$	1.43	$5.01 \mathrm{d}$
$^{210}\mathrm{Po}$	$^{206}\mathrm{Pb}$	α	5.41	138 d
$^{206}\mathrm{Pb}$				stable

	Decay	Energy	Half Life
	Mode	[MeV]	
228 Ra	α	4.08	$1.41 \times 10^{10} \text{ yr}$
$^{228}\mathrm{Ac}$	$oldsymbol{eta}$	0.0459	$5.75 \mathrm{\ yr}$
$^{228}\mathrm{Th}$	$oldsymbol{eta}$	2.12	6.25 hr
224 Ra	α	5.52	$1.91~\mathrm{yr}$
$^{220}\mathrm{Rn}$	α	5.79	$3.63 \mathrm{d}$
216 Po	α	6.40	$55.6 \mathrm{s}$
$^{212}\mathrm{Pb}$	α	6.91	$0.145 \mathrm{\ s}$
$^{212}\mathrm{Bi}$	$oldsymbol{eta}$	0.570	10.6 hr
212 Po	β 64.06%	2.25	60.6 min
$^{208}{ m Tl}$	α 35.94%	6.21	00.0 11111
$^{208}\mathrm{Pb}$	α	8.96	299 ns
$^{208}\mathrm{Pb}$	$oldsymbol{eta}$	5.00	$3.05 \mathrm{\ min}$
			stable
	²²⁸ Ac ²²⁸ Th ²²⁴ Ra ²²⁰ Rn ²¹⁶ Po ²¹² Pb ²¹² Bi ²¹² Po ²⁰⁸ Tl ²⁰⁸ Pb	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$R=B imes y$$
 Branching ratio $y=\sum_i y_i(E_i) imes \zeta_i$ $y_c=\sum_{i,j} rac{w_j S_j^m(E_i)}{S_c^m(E_i)} y_{i,j}(E_i)$

B: activity of the chain (assuming secular equilibrium)

Index i running over nuclides in the chain

Index j running over elements in the compound

S: mass stopping power for alpha particles

w: mass fraction for each element

y: neutron yield for each element

y taken from Heaton et al., NIMA276 (1989)

1/

Intrinsic neutron background

* W. Wilson et al., LA-13639-MS, Los Alamos (1999); M.J. Carson et al., Astroparticle Phys. 21 (2004) 667

Process	SOURCES calculation (n kg ⁻¹ y ⁻¹)	calculation by hand (n kg ⁻¹ y ⁻¹)
Spontaneous fission	0.745	0.768
(α,n) from ²³² Th-chain	0.109	0.100
(α,n) from ²³⁸ U-chain	0.328	0.325
Total flux	1.182	1.193

Other neutron sources

Cosmic muon-induced neutrons

Under evaluation; in underground sites is expected be less that the one from intrinsic radioactive contamination (preliminary estimation)

Neutrons from environmental radioactivity

Should be reduced to a negligible level with appropriate shielding; under study.