Cross-correlations between non-gravitational and gravitational probes of particle dark-matter

> Marco Regis, Stefano Camera, Nicolao Fornengo, Mattia Fornasa

We look for a non-gravitational signal of Dark Matter.

The source we want to discover is:

- faint

Naively:

Go for a deep observations of single objects

We look for a non-gravitational signal of Dark Matter.

The source we want to discover is:

- faint

- very numerous

(any luminous source is embedded in a DM halo)

DM sources can affect the statistics of photons across the sky (even in the case they are too dim to be individually detected)

Statistical correlations

Extragalactic DM background

What'Next, Dark Matter GdL, INFN, 10/07/2014

The two-point angular correlation can contain a wealth of information on particle DM.

In order to separate the DM non-gravitational signal from other astrophysical emissions, a filter based on the DM properties we know (i.e. the associated gravitational potential) can be very helpful.

Correlation with gravitational lensing

Approximately 10 z-bins in the range 0 < z < 2.5 with photometric scatter $\sigma_z = 0.05(1 + z)$

EUCLID

Photometric/spectroscopic survey

Sensitivity 30 gal / arcmin²

Sky coverage 20000 sq. degree

Operational phase 2020-2026

An astrophysical experiment but can have interesting things to say about particle physics.

Both electromagnetic signals from DM and lensing signals are set by the (dark) matter density.

The lensing map could be the <u>filter</u> we need to isolate a **signal** which is there but is hidden by a large "noise".

Examples are shown for a typical WIMP model with an interaction rate

such that the EGB is saturated at few GeV.

What'Next, Dark Matter GdL, INFN, 10/07/2014

Very difficult to extract a clear WIMP signature from the extragalactic gamma-ray background alone.

What'Next, Dark Matter GdL, INFN, 10/07/2014

8

Very difficult to extract a clear WIMP signature from the extragalactic gamma-ray background alone.

What'Next, Dark Matter GdL, INFN, 10/07/2014

Very difficult to extract a clear WIMP signature from the extragalactic gamma-ray background alone.

What'Next, Dark Matter GdL, INFN, 10/07/2014

APS ingredients / window function

The peak of the WIMP window function is at lower z than for astrophysical sources. A tomographic approach can be promising.

What'Next, Dark Matter GdL, INFN, 10/07/2014

APS ingredients / 3D power spectrum

The WIMP power spectrum has more power at intermediate scales (k~1-10 h Mpc⁻¹). We can use the angular information!

(not possible at present with the autocorrelation alone due to the blazars domination)

What'Next, Dark Matter GdL, INFN, 10/07/2014

Forecasts

A WIMP model, which is undetectable with gamma-rays alone,

can be instead clearly detected through the correlation with cosmic shear.

First tests can be performed in the forthcoming future (DES + Fermi LAT).

Fisher Matrix forecasts

Tomographic approach (for cosmic shear observations) and

energy binning (for γ -ray observations) make the method much more powerful

Cross-correlation with LSS

Possibility of **tomographic approach** using different galaxy surveys. <u>wrt the lensing case</u>: part of the correlation (1-halo term) might be lost and galaxy bias is needed.

Conclusions

DM halos are faint but they are a lot!

If a particle DM model (WIMP, sterile neutrinos, axions, etc..) induces an **electromagnetic** emission, such non-gravitational signal is correlated with the **gravitational** potential.

Gravitational probes can act as a filter and help to isolate a WIMP signature (in particular by exploiting a tomographic approach).

Very promising prospects for the Euclid weak-lensing survey!

Particle Cosmology with Euclid

What'Next, Dark Matter GdL, INFN, 10/07/2014

Table 18: $\sigma(M_{\nu})$ and $\sigma(N_{\text{eff}})$ marginalized errors from LSS+CMB

General cosmology						
fiducial \rightarrow	$\Sigma=0.3{\rm eV}^a$	$\Sigma=0.2{\rm eV}^a$	$\Sigma=0.125\mathrm{eV}^b$	$\Sigma = 0.125 \mathrm{eV}^c$	$\Sigma=0.05\mathrm{eV}^b$	$N_{\rm eff}=3.04^d$
EUCLID+Planck	0.0361	0.0458	0.0322	0.0466	0.0563	0.0862
			$\Lambda {\rm CDM}$ cosmology			
EUCLID+Planck	0.0176	0.0198	0.0173	0.0218	0.0217	0.0224

^{*a*} for degenerate spectrum: $m_1 \approx m_2 \approx m_3$; ^{*b*} for normal hierarchy: $m_3 \neq 0$, $m_1 \approx m_2 \approx 0$ ^{*c*} for inverted hierarchy: $m_1 \approx m_2$, $m_3 \approx 0$; ^{*d*} fiducial cosmology with massless neutrinos

Backup slides

What'Next, Dark Matter GdL, INFN, 10/07/2014

Angular power spectrum

ISOTROPIC INTENSITY
$$\langle I_g \rangle = \int d\chi \ W(\chi)$$

W = window function

3D POWER SPECTRUM

$$\langle \hat{f}_{g_i}(\chi, \boldsymbol{k}) \hat{f}_{g_j}^*(\chi', \boldsymbol{k}') \rangle = (2\pi)^3 \delta^3(\boldsymbol{k} - \boldsymbol{k}') P_{ij}(k, \chi, \chi')$$

TWO-POINT ANGULAR POWER SPECTRUM

$$C_{\ell}^{(ij)} = \frac{1}{\langle I_i \rangle \langle I_j \rangle} \int \frac{d\chi}{\chi^2} W_i(\chi) W_j(\chi) P_{ij}(k = \ell/\chi, \chi)$$

APS uncertainties

Uncertainties in the power spectrum estimate do not seem to significantly affect the possibility of detecting a WIMP signal (provided the WIMP emission is a relevant component of the EGB)