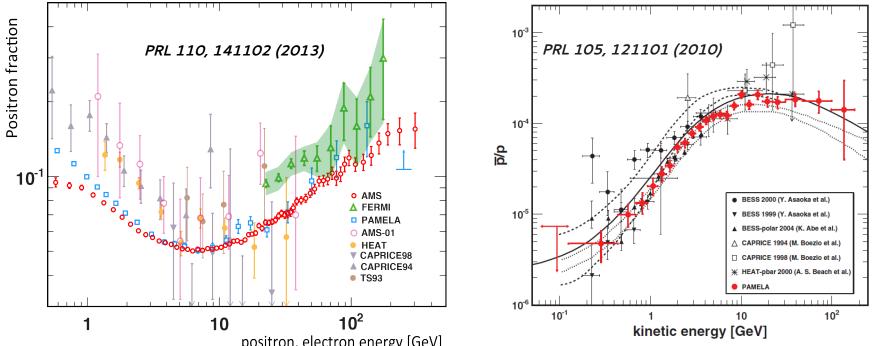
PADME project at DAFNE Linac

Venelin Kozhuharov^{1,2} & Mauro Raggi¹ ¹LNF-INFN ²University of Sofia

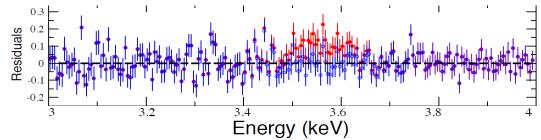
INFN What Next Dark Matter

10 July 2014

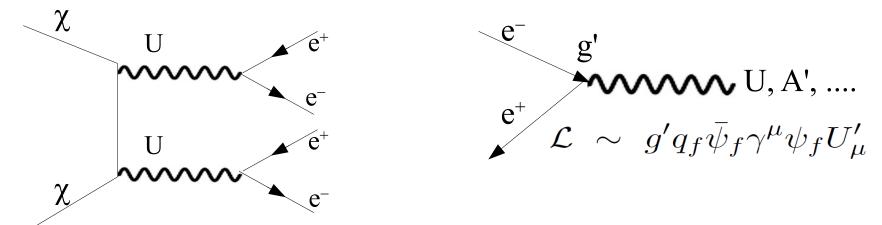

- Motivation
- PADME experiment
- Expected sensitivity
- Dark photon searches at BTF
- Conclusion

Motivation: New Physics

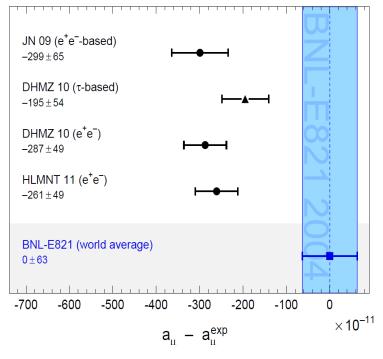
- Standard Model is complete: 2012 LHC Higgs boson
- Unknowns:
 - Matter-antimatter asymmetry
 - Dark matter
 - Dark Energy
- Still some places of discrepancies between theory and experiment
- The Standard Model is a low energy approximation of a more fundamental theory.

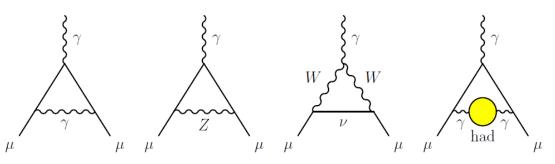

But which theory?

Positron excess: PAMELA, FERMI, AMS02

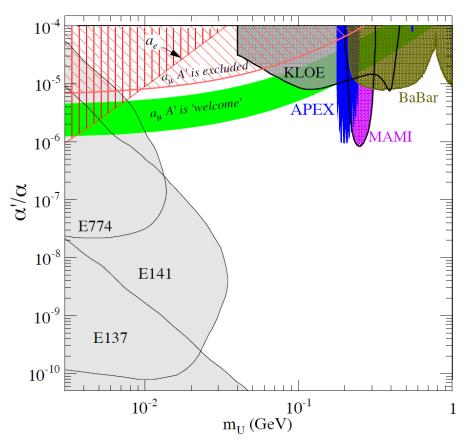

- No significant excess in antiprotons: pure secondary production
- ... and astronomy

Observation of 3.5keV line? arXiv:1402.2301 arXiv:1402.4119 Possible interpretation: arXiv:1404.2220


Hint for dark matter?


Dark matter annihilation through

- If Dark Matter is the explanation to the positron excess, then the mediator should be light (< 2*M_{proton})
- Coupling constant to DM could be arbitrary (even O(1))
- The Lagrangian term can arise through
 - fermions being charged (mili) under this new gauge symmetry ($q_f \rightarrow 0$ for some flavours)
 - Kinetic mixing between ordinary photon and DM one: $\mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark}$
 - Using simply an effective description: $g'.q'_e = \varepsilon$, $\alpha' = \alpha * \varepsilon^2$


About 3 σ discrepancy between theory and experiment (3.6 σ , if taking into account only $e^+e^- \rightarrow$ hadrons)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

Heavy/Dark photon/boson

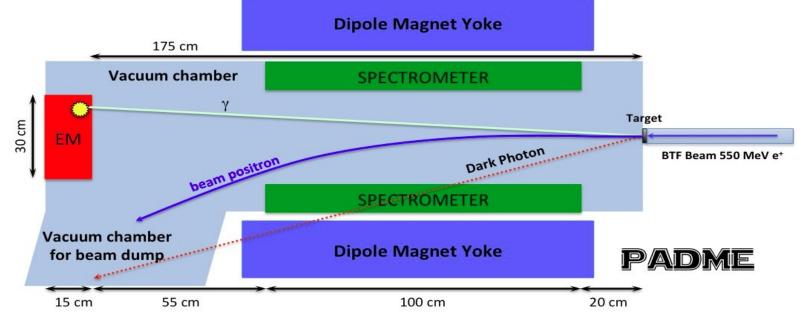
- The most attractive explanation of the phenomena is the simplest one – with a single object
- If this is the U-boson, it should be sufficiently light – 10-100MeV
- Searches
 - Beam dump experiments
 - A'-strahlung production
 - Every observed event is signal
 - Fixed target
 - peaks in the e⁺e⁻ invariant mass spectrum
 - Meson decays
 - Peaks in $M_{e^+e^-}$ or $M_{\mu^+\mu^-}$

How to improve?

- Searching a U-boson in a kinematically constraint event and using full reconstruction
- Basic process: positron on a fixed target

$$e^+ + e^- \rightarrow \gamma + U \begin{cases} \gamma + E_{miss} & (invisible channel, U \rightarrow \chi \chi) \\ \gamma + e^+e^- & (visible channel, U \rightarrow e^+e^-) \end{cases}$$

• Normalizing to the concurrent process - annihilation

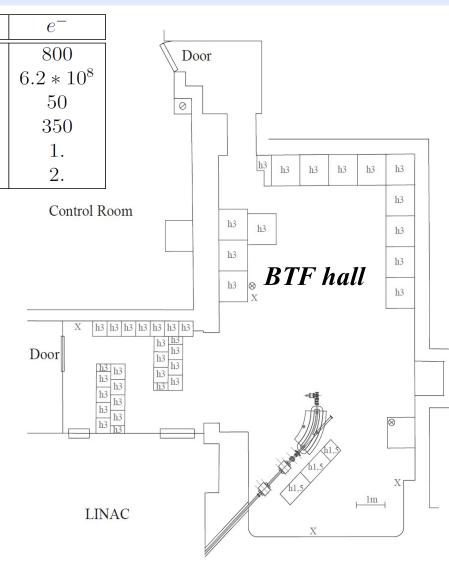

$$\frac{\sigma(e^+e^- \rightarrow \gamma U)}{\sigma(e^+e^- \rightarrow \gamma \gamma)} = \frac{N(\gamma U)}{N(\gamma \gamma)} * \frac{Acc(\gamma \gamma)}{Acc(\gamma U)} = \varepsilon^2 * \delta$$

- $N(\gamma U)$, $N(\gamma \gamma)$ number of registered events
- Acc(γ U), Acc($\gamma\gamma$) detection efficiency
- $\delta = \sigma(e^+e^- \rightarrow \gamma U)/\sigma(e^+e^- \rightarrow \gamma \gamma)$ at $\epsilon = 1 cross section enhancement factor$

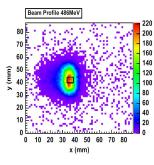
Is it possible such a search to be conducted at BTF?

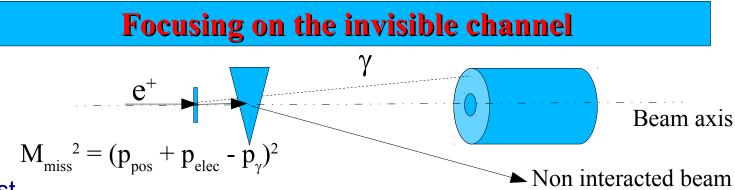
PADME experiment

Positron Annihilation into Dark Matter Experiment

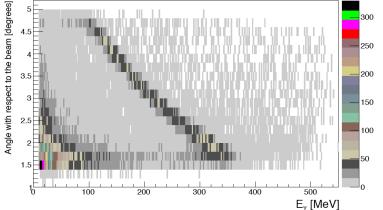


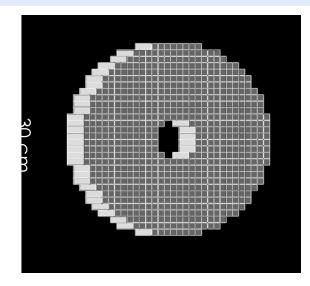
- Small scale fixed target experiment
- Measuring both charged and neutral particles:
 - Spectrometer
 - Calorimeter
 - Beam profile



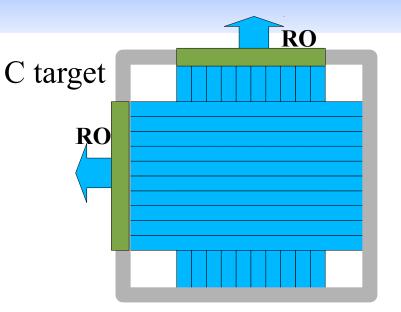

 e^+ Maximal beam energy [MeV]550Beam rate [particles/burst] 6.2×10^8 Number of bursts per second50Max. averaged current during a burst [mA]85Typical emittance (mm mrad)1.5Beam spot size (σ in mm)2.

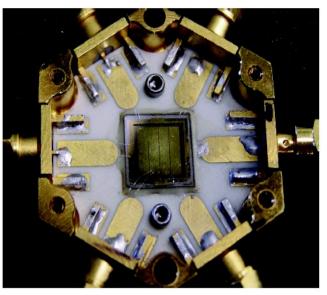
- Variable beam energy
 - from ~250 MeV to E_{MAX}
- Variable beam intensity
- Possibility for single particle beam
 - However we need statistics...
- Both positron and electron beams
- Small beam energy spread
- Available immediately
- The accessible region is limited by the maximal beam energy
 - Around 23 MeV for 550 MeV e⁺ beam





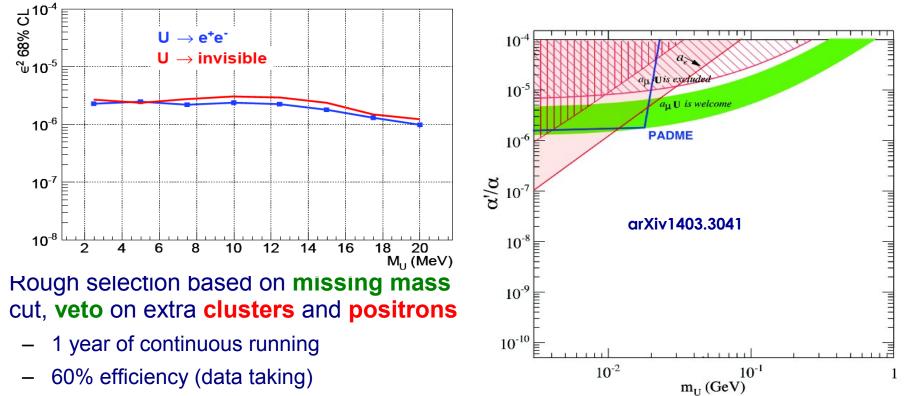
- Electron is at rest
- Positron momentum is determined by the accelerator characteristics 1% resolution
- Basic contribution to the missing mass resolution reconstruction of the photon 4momentum
 - Interaction point inside the target beam transverse size is small, but the time stability is not sufficient
 - Cluster position in the calorimeter
 - Energy resolution of the calorimeter


Detectors



- Cylindrical shape
- 656 LYSO crystals, 1x 1 x 15 cm³
- Energy resolution:

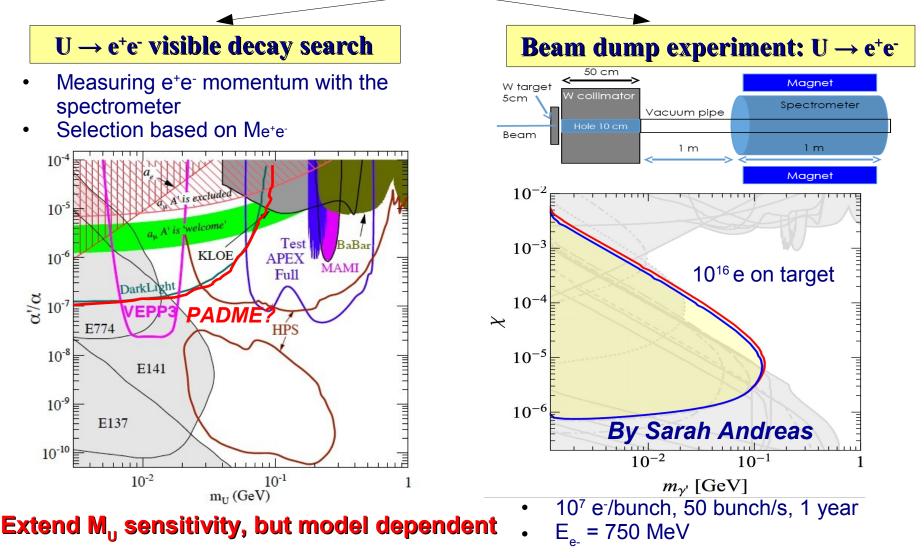
$$\sigma E/E = \frac{1.1\%}{\sqrt{E}} \oplus \frac{0.4\%}{E} \oplus 1.2\%$$


- Possible substitutions: BGO?
 - Available at ROME 1
 - 10x longer decay time

Expected sensitivity

GEANT4 based simulation to assess the possible reach

- 50 bursts/s
- 10⁴ positrons/burst
- Considering the statistical uncertainty of the expected background to set the limits

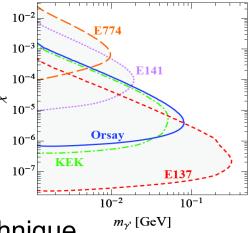

Present status and future steps

- Interested parties:
 - INFN LNF: M. Raggi, V. Kozhuharov, B. Bruno, L. Foggetta
 - INFN ROMA1: P. Valente, E. Leonard, G. Organtini;
 - INFN Lecce: G. Chiodini, S. Spagnolo
 - Sofia, Bulgaria: V. Kozhuharov
- Planned activities:
 - Test run @BTF: 24.11 4.12.2014
 - Study the possibility to use BGO
 - Monte Carlo validation
 - Background study at low statistics
 - Diamond beam monitor/target test
 - Positron emittance to be re-measured
 - Bunch structure tests
 - Maximal BTF instantaneous current test

WEB: http://www.lnf.infn.it/acceleratori/padme/ MAIL: https://lists.infn.it/sympa/subscribe/padme-general

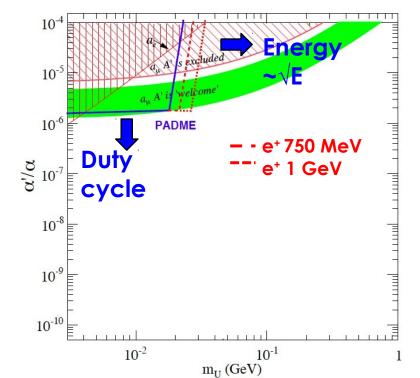
PADME future program

conventional electron beam and U-strahlung: $e^{-}Z \rightarrow e^{-}ZU$



Beam dump prospects

Experiment	target	E_0	$N_{ m el}$		$L_{\rm sh}$	$L_{\rm dec}$	$\mathbf{\lambda}^{T}$	27
		$[\mathrm{GeV}]$	electrons	Coulomb	[m]	[m]	$N_{ m obs}$	$N_{95\%\mathrm{up}}$
E141 [47]	W	9	$2{\times}10^{15}$	$0.32 \mathrm{~mC}$	0.12	35	1126^{+1312}_{-1126}	3419
E137 [48]	Al	20	$1.87{ imes}10^{20}$	30 C	179	204	0	3
E774 [49]	W	275	5.2×10^9	0.83 nC	0.3	2	0^{+9}_{-0}	18
KEK [39]	W	2.5	$1.69{ imes}10^{17}$	$27 \mathrm{mC}$	2.4	2.2	0	3
Orsay $[40]$	W	1.6	$2{ imes}10^{16}$	$3.2 \mathrm{mC}$	1	2	0	3


Improvements both in number of electrons and size of the experiment

- Present BTF limit 10¹⁸ e⁻/year due to plant authorization
- Possible flux up to 10²¹ e⁻/year!
- Access to unexplored regions in just 3 days of running
- Decay length governs the access to high ϵ small scale is better if background is under control
- Flux governs the access to higher masses
- A dedicated and optimized search, not a data mining technique

Possible improvements

- Duty cycle upgrade:
 - Present: 50Hz * 10ns = 0.5*10⁻⁶
 - At 10 ns all the particles in the bunch are treated as belonging to the same event
 - At 40ns (100 ns) time resolution of LYSO
 & Spectrometer improves the veto
 - Improvement on the repetition of equal profit!
- Energy upgrade
 - Extend the access to M_u ~27 MeV
 - Improve the results in the range 20 23 MeV

- Bremsstrahlung production and visible/dump detection
 - Extend the mass region
 - Extend the ϵ^2 region to lower values due to higher U-boson boost
- Beam related background (i.e. accompanying spurious particles)
 - Difficult to access in the simulation, desired to be as minimal as possible

- PADME is a small scale fixed target experiment to search for dark photons in the invisible channel proposed.
- Interesting parameter space could be covered, using $10^3 10^5 e^+$ /bunch.
- PADME will turn BTF from a test beam facility into a fundamental physics machine
- Test beam and initial studies already ongoing
- The portal for a complete physics program devoted to the dark photon searches is open – visible, invisible, thin target, thick target, dump, electron or positron