

# Is sub-100 picosecond time resolution feasible in realistic TOF-PET systems?

MEDAMI 2014, Alghero, Italy, September 6, 2014





#### **Time of Flight PET Systems**



#### $\rightarrow$ ToF: more signal, less noise



#### Motivation towards improved TOF



#### PMT-based TOF-PET systems

- Commercial TOF PET/CT scanners available from several manufacturers
- All based on PMTs
- Coincidence resolving time (CRT): 500-700 ps FWHM



PMT-based PET detector



Philips Gemini TF



GE Discovery 690



Siemens mCT



## Vereos fully digital PET/CT system

Coincidence resolving time (CRT) **350-400 ps FWHM** due to digital photon counting





#### SNMMI 2014, St. Louis, MO

#### Initial characterization of a prototype digital photon counting

PET system M. Miller et al, Philips Healthcare, Highland Heights, OH and Case Western Univ., Cleveland, OH







10

15

20



А



Improved reconstruction

20

10

#### 2009: 100 ps barrier broken with SiPMs

Made possible by the combination of:

- Small LaBr<sub>3</sub>:Ce(5%) crystals (3 mm x 3 mm x 5 mm)
- Silicon Photomultipliers (Hamamatsu MPPC-S10362-33-050C)
- Digital Signal Processing (DSP)

**T**UDelft



D.R. Schaart et al, Phys Med Biol 55, N179-N189, 2010



See: Thomas Frach, IEEE NSS/MIC, Orlando, FL October 28, 2009

**T**UDelft



## DPC timing resolution

Two coincident detectors:

- DPC-3200-44-22 dSiPM arrays
- 3 x 3 x 5 mm<sup>3</sup> LSO:Ce,Ca crystals



Timing spectra at different positions of one of the two detectors. The step size is 20 mm. The average coincidence resolving time (CRT) is **123 ps FWHM**.





# Understanding SiPMs and Timing

#### Understanding timing:

- S. Seifert et al, "The Lower Bound on the Timing Resolution of Photon Counting Scintillation Detectors," Phys Med Biol 57, 1797-1814, 2012
- S. Seifert et al, "A Comprehensive Model to Predict the Timing Resolution of SiPM-Based Scintillation Detectors: Theory and Experimental Validation," IEEE Trans Nucl Sci 59, 190-204, 2012
- S. Seifert et al, "Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters," J Instr 7, P09004, 2012
- J. Huizenga et al, "A fast preamplifier concept for SiPM-based time-of-flight PET detectors," NIM A 695, 379-384, 2012
- H.T. van Dam et al, "Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation," Phys Med Biol 58, 3243-3257, 2013

#### Understanding analog and digital SiPMs:

- S. Seifert et al, "Simulation of Silicon Photomultiplier Signals," IEEE Trans Nucl Sci 56, 3726-3733, 2009
- H. T. van Dam et al, "A comprehensive model of the response of silicon photomultipliers," IEEE Trans Nucl Sci 57, 2254-2266, 2010
- H.T. van Dam et al, "The statistical distribution of the number of counted scintillation photons in digital silicon photomultipliers: model and validation," Phys Med Biol 57, 4885-4903, 2012
- V. Tabacchini et al, "A Model for the Trigger and Validation Probabilities in a Digital Silicon Photomultiplier," J. Instrumentation 9, P06016, 2014



## Scintillation photon counting statistics



# Calculation of $CRT_{LB}$

#### Parameters included in the calculation:

- Scintillation light yield Y
- Photodetection efficiency  $\eta$
- Scintillation pulse shape,
  - $\rightarrow$  For example, bi-exponential pulse



with rise time constant  $\tau_{\rm r}$  and decay time constant  $\tau_{\rm d}$ 

- Probability density function describing the single-photon timing uncertainty
  - → comprises optical path length variations in crystal, transit time spread (TTS) of sensor, trigger jitter, etc.
  - → for a very small crystal and near-perfect detector readout, this contribution is dominated by the photosensor TTS
  - $\rightarrow~$  here represented by a Gaussian with standard deviation  $\sigma$

The math involves order statistics, it can be found in:

S. Seifert, H.T. van Dam, and D.R. Schaart, "The lower bound on the timing resolution of scintillation detectors," Phys Med Biol 57, 1797-1814, 2012

## Lower bound on the CRT of LSO:Ce,Ca



Lower bound on the CRT of LSO:Ce,Ca + MPPC as a function of PDE and TTS

# DOI-dependent signal delay in crystal



#### Factors influencing scintillation pulse shape



D.N. ter Weele et al, SCINT 2013, Shanghai, 19-Apr-2013

**T**UDelft

#### Optical transit time spread (OTTS) measurement with a streak camera



Schematic overview of streak camera principle



#### Optical transit time spread (OTTS) measurement with a streak camera



D.N. ter Weele et al, SCINT 2013, Shanghai, 19-Apr-2013

#### Polished LYSO 3x3x5 mm<sup>3</sup> crystal



D.N. ter Weele et al, SCINT 2013, Shanghai, 19-Apr-2013

**T**UDelft

## Optical transit time-spread (OTTS)



**TU**Delft

- Optical transit time-spread increases with the length of the crystal
- Light trapping in polished crystals increases the photon collection time
- OTTS easily > 100 ps

D.N. ter Weele et al, SCINT 2013, Shanghai, 19-Apr-2013

# Timing deterioration in large crystals

Factors causing deterioration of photon counting statistics in large crystals:

- Different speeds of gamma and scintillation photons in crystal
- Increased light loss, especially in high-aspect-ratio crystals
- Increased optical path length straggling

Possible solutions:

- Use many small crystals one-to-one coupled to SiPMs
  - $\rightarrow$  technically challenging, expensive
- DOI correction on time stamps
  - $\rightarrow$  limited by error on DOI
  - $\rightarrow$  does not mitigate light loss and optical path length straggling
  - $\rightarrow$  DOI schemes based on light sharing may cause timing deterioration

Let's try something else...

(a practical approach towards 100 ps system resolution)

#### Monolithic scintillator detectors



# The monolithic scintillator detector

Monolithic TOF/DOI detector with improved performance due to Ca co-doped LSO scintillator, digital photon counters (DPCs), and optimized readout algorithms



32 mm x 32 mm x 22 mm LSO:Ce,Ca scintillator on PDPC digital SiPM array

Fast & accurate nearest-neighbour algorithm, H.T. van Dam et al, IEEE Trans Nucl Sci 58, 2139-2147, 2011

y-error 10-1-2-3-4-5-5-4-3-2-10 x-error

smooth histogram

(5 x 5 moving average)

choose set of *k* best matching reference distributions

O.15

<sup>2</sup>robability

-2 0 2 x-coordina



S. Seifert et al, First Characterization of a Digital SiPM based Time-of-Flight PET Detector with 1 mm Spatial Resolution," Phys Med Biol 58, 3061-3074, 2013



create

histogram of the k

coordinates

#### Sub-2 mm spatial resolution



**T**UDelft

G. Borghi et al, 2012 IEEE NSS-MIC, Anaheim, Oct 27 - Nov 3, 2012, abstr. JNMR-7



## ML interaction time estimation (MLITE)

More than 1 timestamp available to estimate the interaction time  $\rightarrow$  use of all this information

Calibration procedure:

- Irradiate entire detector uniformly
- Determine position of each interaction
- Determine the 1<sup>st</sup> photon arrival time probability distribution on each dSiPM element for each interaction position







## ML interaction time estimation (MLITE)

Maximum likelihood interaction time estimation (MLITE), using measured 1<sup>st</sup> photon arrival time probability distribution for each (x,y,z) position







# Timing performance of monolithic scintillator detectors with MLITE



Using only the earliest timestamp: CRT ~ 200 ps – 230 ps FWHM
Without electronic skew correction: CRT ~ 350 ps FWHM

MH.T. van Dam et al, Sub-200 ps CRT in monolithic scintillator PET detectors using digitalSiPM arrays and maximum likelihood interaction time estimation, PMB 58, 3243-3257, 2013



#### Performance summary



Current results with L(Y)SO monolithic scintillators on dSiPM arrays:

| Performance parameter |           | Monolithic | State of the art |
|-----------------------|-----------|------------|------------------|
| Energy resolution     | (% FWHM)  | 11 - 12    | ~12              |
| Spatial resolution    | (mm FWHM) | 1.0 - 1.6  | 4 - 6            |
| DOI resolution        | (mm FWHM) | 3 - 5 mm   | None             |
| CRT                   | (ps FWHM) | 160 - 185  | 350 - 650        |

 $\Rightarrow$  A highly promising detector for whole-body and organ-specific TOF-PET and PET/MRI



