

Alessandro, Ettore, Giuseppe, Nanni Genova, 19 June 2014

Design of masks for SU8 deposition Flip-chip machine retune KLA-Tencor profilometer Action list from last meeting

★ -> -- -**-**--**-**-**1**

HV/HR - CMOS

Indico agenda:

https://agenda.infn.it/conferenceDisplay.py?confld=8261

HV-CMOS: Hybridization

Alessandro

MASKS FOR SU8 AND METAL DEPOSITION

Chip Dimensions

Quartz Mask Layout

Layout in DXF

INFN / Genova

HV-CMOS: Hybridization

FE-I3 - SU8 Spacers

SU8 SPACERS

Matrix 800x800 μ m pitch with 200 μ m square spacers Leave ~1.2 mm clearance from chip borders Mask with 200 x200 μ m² and 40 x 40 μ m² spacers

INFN / Genova

HV-CMOS: Hybridization

INFN / Genova

INFN

HV-CMOS: Hybridization

19 June 2014 10

FE-I3 Masks in GDS II

				_							-	
		•	 •									
_				-		:					3	
INEN / Genova				HV-CMO	S: Hybridizati	ion				19 Jun	o 2014	11

FE-I3: Mask Alignment

There are no reference crosses on FE-13 to align to:

- Alignment is done as shown in the figs on the left: slid to bump-pads.
- Photoresist will remain in the slid up to the chip edge. Is it an issue?

FE-I4 - SU8 Spacers

Mask for FE-I4B type of chip:

- Column dimension: 200x200 μm² and 40x40 μm²
- Total column's area: 25.1 mm² (@ 200 μm column) 7.8 mm² (@ 40 μm column)
- Fraction covered by columns: 8.0 % (@ 200 μm) 2.9 % (@40 μm)

FE-I4B: 200 x 200 µm² Spacers

FE-I4B: 40 x 40 µm² Spacers

Chip top-left cross in a corner

INFN / Genova

HV-CMOS: Hybridization

Overlaid bottom/ top glasses with spacers interposer

HV-CMOS: Hybridization

Metal Patterns Deposited on Glass

On the two facing glasses matching metal structures:

- Pads simulating FE-I3/FE-I4B bump pattern (for visual alignment).
- Strips of 0.4 x 2.0 mm2. There is one in each corner and one in the centre. Capacity is about 4.5 pF for 5 μm distance (SU8 thickness).

Capacitance Evaluation

• The formula for evaluating the capacitance is:

- The C using the FE-I4B bump-pads:
 - Metal pad diameter = 18µm
 - For d = 5 μ m and Er = 3.2, C = 1.4 fF
- Some C values for strip/pad structures are in the table

Structure	W or D (um)	L (um)	D (um)	C (fF)			
Pad (circ.)	D = 18		1	7.21			
	D = 18		3	2.40			
Pad (circ.)	D =18		5	1.44			
Strip	400	2 000	1	22 666.72			
Strip	400	2 000	5	4 533.34			
Relative die Vacuum die	electric constant electic constant (3.2 8.854 E-12	C·V ^{−1} · m ^{−1}				
Definition W = Width (diameter for circular pads) L = Length D = distance between plates C = Capacity							

- Signal needed by FE-I4
 - Typical charge for a MIP in 200µm sensor 15ke, typical V at the HV-CMOS output 1 V:

C = Q/V = 1.5 x 104 * 1.602 x 10⁻¹⁹ [Q]/ 1 [V] = 2.4 fF i.e 3µm of SU8

Note: considering that FE-I4B can operate well with 10ke <u>**5** µm of SU8</u> is a good value to start.

SU8 Physical Properties

We have procured:

- SU-8 photoresist: 2005, 2002, 2000.5 + developer from Microchem
- stripper: mr Rem 660 (Microresist Technology)
- http://www.microresist.de/produkte/mcc/pdf/su_8_2000_2000_5_bis_2015.pdf

Physical Properties

(Approximate values)

Adhesion Strength (mPa) Silicon/Glass/Glass & HMDS	38/35/35
Glass Transition Temperature (Tg °C), tan δ peak	210
Thermal Stability (°C @ 5% wt. loss)	315
Thermal Conductivity (W/mK)	0.3
Coeff. of Thermal Expansion (CTE ppm)	52
Tensile Strength (Mpa)	60
Elongation at break (εb %)	6.5
Young's Modulus (Gpa)	2.0
Dielectric Constant @ 10MHz	3.2
Water Absorption (% 85°C/85 RH)	0.65

Ettore

ASSEMBLY & FLIP-CHIP MACHINE

Flip-chip Machine Calibration

- Flip chip machine calibrated with 200μm thick glasses
 - Used calibrated patterns on glass (from flip-chip machine vendors) and old bump pad arrays available from Selex.
 - Better than 7μ m is obtained over a distance of 8 mm (see next slides)

Bottom to Top glass Alignment - Detail

Alessandro, Ettore & Giuseppe

PROFILOMETER TESTS KLA-TENCOR

Indium BB: Next Steps

- On-going upgrade at Selex of the mask aligner to deal with 6" wafers (in the past only 8" for electronics and 4" for sensors where available). Expected operation after summer.
 - We will test with the 6" wafers from FBK (3D sensors of IBL-like type and planar devices from batch2)
- *Develop high density/high number of of bumps BB with dummy sensors:*
 - 130k-bumps, 50µm x 50µm pitch, 2 x 2 cm2

Tools for Hybridization Developments

Mechanical Profilometer (Genova ATLAS)

• Useful for BB and HV/HR-CMOS hybridization

ACTION LIST: Where are we?

- Valutare capacità necessaria per accoppiare HV/HR-CMOS con FE-I4: done
- Procurare SU-8 2005, adatto per spessori dell'ordine di $5\mu m \rightarrow$ done
- Maschere → **done**
- Spinning photoresist, test spessore deposizione mediante misure con profilometro ottico, impressione e sviluppo photoresist mediante mascere, misura altezza colonne (con profilometro meccanico/ottico). Test iniziali su vetrini e poi su chip → in progress
- Deposizione del photoresist (usato come colla) in forma di "paddle" e come velo sottile per bagnare l'altra superficie d'incollaggio → To be done
- Messa a punto della macchina di flip-chip e verifica se utilizzabile per incollaggio di 2 parti della dimensione FE-I3 e di un FE-I4 con un componente delle dimensioni del FE-I3 → done
- Prove d'incollaggio (processo completo) e verifica allineamento e uniformità spessore e assenza di bolle. La procedura andrà finalizzata in base ai risultati dei passi precedenti. → To be done
- Utilizzo e-log. Messa a punto di e-log e informazioni su come usarlo → **done**
- Valutare la possibilità di misure di uniformità spessore e allineamento mediante vetrini con pattern metallizzati e misure di capacità: implemented in the mask → done (mask)

Action list from 3/4/2014

Assembly of HV-CMOS/FE-I4

- Procedure (idea to fully workout)
 - Deposit US-8 photoresist by spinning \rightarrow ~5 μm thick
 - Use mask to pattern the photoresist → make spacer columns
 - Deposit glue amongst columns

Let's disc

- Align FE-I4 to HV-CMOS \rightarrow with old flip-chip machine?
- Apply pressure until columns are in contact
- Is feasible?

SU-8 2000 Permanent Epoxy Negative Photoresist PROCESSING GUIDELINES FOR:

SU-8 2000.5, SU-8 2002, SU-8 2005, SU-8 2007, SU-8 2010 and SU-8 2015

SU-8 2000 is a high contrast, epoxy based photoresist designed for micromachining and other microelectronic applications, where a thick, chemically and thermally stable image is desired. SU-8 2000 is an improved formulation of SU-8, which has been widely used by MEMS producers for many years. The use of a faster drying, more polar solvent system results in improved coating guality and increases process throughput. SU-8 2000 is available in twelve standard viscosities. Film thicknesses of 0.5 to >200 microns can be achieved with a single coat process. The exposed and subsequently thermally cross-linked portions of the film are rendered insoluble to liquid developers. SU-8 2000 has excellent imaging characteristics and is capable of producing very high aspect ratio structures. SU-8 2000 has very high optical transmission above 360 nm, which makes it ideally suited for imaging near vertical sidewalls in very thick films. SU-8 2000 is best suited for permanent applications where it is imaged, cured and left on the device.

SU-8 2000 Features

- High aspect ratio imaging
- 0.5 to > 200 μ m film thickness in a single coat
- Improved coating properties
- Faster drying for increased throughput
- Near UV (350-400 nm) processing
- Vertical sidewalls

