

A. Garfagnini

Padova University and INFN

June 30, 2014

Neutrino Oscillations and Mass Hierarchy

Pontecorvo (1957) Maki, Nakagawa and Sakata (1962) Pontecorvo and Gribov (1969)

$$U = U_{MNS} \cdot \Gamma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \times diag(1, e^{i\beta}, e^{i\gamma})$$

$$Atm + accel \nu$$
Next generation experiments
$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^{4}(\theta_{13})\sin^{2}(2\theta_{12})\sin^{2}(\Delta_{21})$$

$$P_{21} = \cos^{4}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32})$$

$$\Delta_{31}^{2} = \Delta_{32}^{2} + \Delta_{21}^{2}$$

$$MH : |\Delta_{31}^{2}| = |\Delta_{32}^{2}| + |\Delta_{21}^{2}|$$

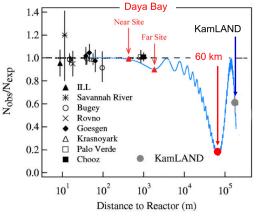
$$MH : |\Delta_{31}^{2}| = |\Delta_{32}^{2}| - |\Delta_{21}^{2}|$$

$$P_{21} = \cos^{4}(\theta_{23}) - |\Delta_{22}^{2}| = |\Delta_{22}^{2}| - |\Delta_{21}^{2}|$$

$$MH : |\Delta_{31}^{2}| = |\Delta_{32}^{2}| - |\Delta_{21}^{2}|$$

$$P_{21} = \Delta_{32}^{2} + \Delta_{21}^{2}$$

$$P_{21} = \cos^{4}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32})$$


$$P_{21} = \cos^{4}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32})$$

$$P_{21} = (\Delta_{32}^{2}) + |\Delta_{21}^{2}|$$

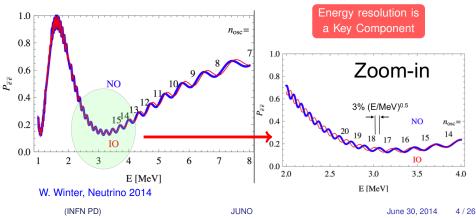
$$P_{21} = (\Delta_{32}^{2}) + |\Delta_{32}^{2}|$$

$$P_{21} =$$

A Next Generation Reactor ν s Experiment

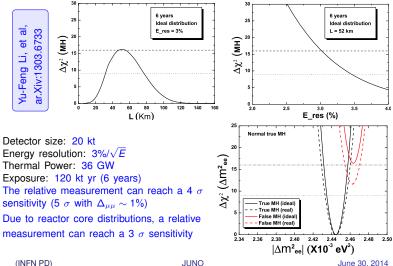
✓ Rich ν physics possibilities

- ✓ Mass Hierarchy
- Precision measurement of mixing parameters
- Geo neutrinos
- ✓ Supernovae neutrinos
- Atmospheric neutrinos
- Sterile neutrinos
- ✓ Exotic searches


Recent talk on reactor ν s: Lianjian Wen, Neutrino 2014

✓ Large large fiducial volume (20 kt) needed

Talks: Y.F. Wang at ICFA seminar 2008, Neutel 2011; J. Cao at Neutel 2009, NuTurn 2012; Papers: L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103 (2008); PRD79:073007 (2009).


ν Mass Hierarchy At Reactors

- Mass Hierarchy accessible thanks to large $\theta_{13} \rightarrow \text{exploit } L/E$ spectrum
- S.T. Petcov et al., PLB533(2002)94; S.Choubey et al., PRD68(2003)113006
- High precision energy measurement required
- Look for the interference between solar and atmospheric oscillations
- Independent of CP phase and θ_{23}

ν Mass Hierarchy in JUNO

- Oscillation probability is different for the two mass hierarchies
- Energy resolution is a key component

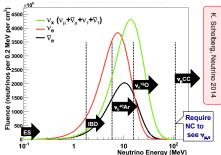
Measurements of Mixing Parameters in JUNO

• Probing the unitarity of U_{PMNS} to 1% level

(Current Error	Juno
	Δm_{12}^2	3%	0.6%
	Δm_{23}^2	5%	0.6%
	Δm_{13}^2	?	N/A
	$\sin^2 \theta_{12}$	6%	0.7%
	$\sin^2 \theta_{23}$	20%	N/A
	$\sin^2 \theta_{13}$	$14\% \to 4\%$	~ 15%

The PMNS will be more precise than the CKM matrix.

Detection of Supernova Neutrinos


K. Scholberg, Neutrino 2014

	Electrons	Protons	Nuclei
Charged current	Elastic scattering $\nu + e^{-} \rightarrow \nu + e^{-}$ $\downarrow^{-}_{v_{e}}$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ γ $e^+ \gamma$ $\overline{\nu}_e$ p	$\nu_{e} + (N, Z) \rightarrow e^{-} + (N - 1, Z + 1)$ $\bar{\nu}_{e} + (N, Z) \rightarrow e^{+} + (N + 1, Z - 1)$ $\nu_{e} \qquad \qquad$
Neutral current	Ve Useful for pointing	Elastic scattering vp very low energy recoils	$\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A^{*}$ $\nu + A \rightarrow \nu + A$

IBD (electron antineutrinos) dominates for current detectors (INFN PD) JUNO June 30, 2014

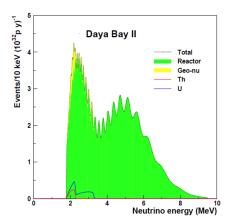
Detection of Supernova Neutrinos in JUNO

- Less than 20 events observed so far
- Assumptions:
- Distance: 10 kpc (our Galaxy center)
- Energy: 3 × 10⁵³ erg
- Neutrino energies and temp:
 - $< E_{
 u_e} >=$ 11 MeV, $T_{
 u_e} =$ 3.5 MeV
 - $< E_{\overline{
 u_e}} >=$ 16 MeV, $T_{\nu_e} =$ 5 MeV
 - $< E_{
 u_x}> =$ 25 MeV, $T_{
 u_e} =$ 8 MeV

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values		
Channel	rype	$12 \mathrm{MeV}$	$14 \mathrm{MeV}$	$16 { m MeV}$
$\overline{\nu}_e + p \rightarrow e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes10^2$	$1.2 imes 10^3$	$2.0 imes 10^3$
$\nu + e \rightarrow \nu + e$	NC	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$
$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	NC	$1.7 imes 10^2$	$3.2 imes 10^2$	$5.2 imes10^2$
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	4.7×10^1	$9.4 imes 10^1$	$1.6 imes 10^2$
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes10^1$	$1.1 imes 10^2$	$1.6 imes 10^2$

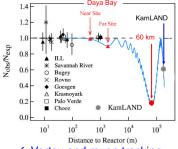
Correlated events.

Better detection in LS than in Water

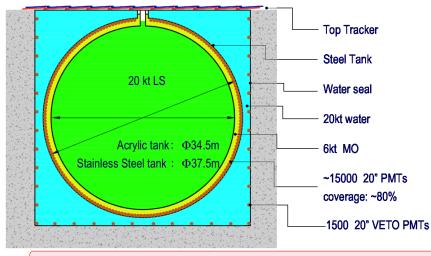

(INFN PD)

ianjian Wen,

Neutrino 2014


Detection of Geo Neutrinos in JUNO

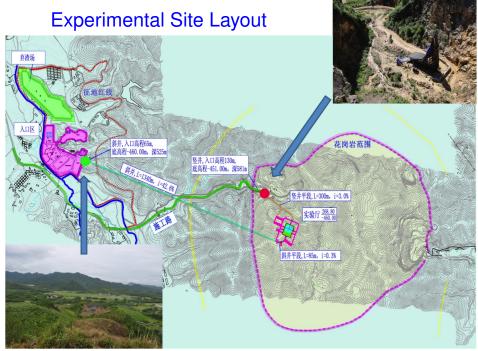
- State of the art on Terrestrial Neutrino measurements:
 - ✓ Borexino: $64 \pm 25 \pm 2$ TNU
 - ✓ KamLAND: $40 \pm 10 \pm 11$ TNU
- Efforts to reach an error of 3 TNU → statistically dominant
- JUNO shall have ×10 statistics, but systematics will be an issue
- Expected rates:
 - ✓ Borexino: \sim 1 event/70 days
 - ✓ KamLAND: ~ 1 event/30 days
 - ✓ JUNO: ~ 1.5 event/day


Detector Design Requirements

- ✓ large 20 kton fiducial volume (35.4 m diameter)
- ✓ 39 m detector diameter (driven by PMTs radioactivity)
- ✓ 3% energy resolution:
 - Linear Akyl Benzene (LAB) liquid scintillator, non Gd doped, attenuation length > 20 m
 - PMT photocatode coverage > 75%
 - PMT quantum efficiency > 35%
- online handling of LS with recycling piping system
- ✓ very low LS radioactivity: U/Th/K < 10⁻¹⁵g/g (for reactor v
 _e). Total single rates in FV < 20 Hz (E > 700 keV)

- Vertex and muon tracking (PMT timing requirements under discussion)
- ✓ 20 years life time: no aging, stable running conditions, earthquake 0.1 g resistant

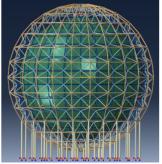
The JUNO Detector Concept Design

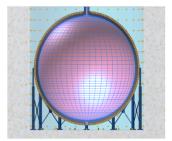


The mechanics of a 40 m diameter detector is challenging: many options are being considere by the Collaboration

The Experimental Site and The Reactors

	Yuanhjiang	Taishan	Daya Bay	Huizhou	Lufeng
Status	Under Constr.	Under Constr.	Operational	Planned	Planned
Power	17.4 GW	18.4 GW, (9.2 GW by 2020)	17.4 GW	17.4 GW	17.4 GW

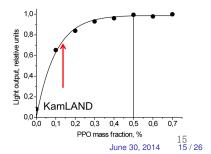



The Central Detector

- A huge detector in a water pool
- Two open options:
 - ✓ Default option: acrylic tank (⊘ ~ 35 m) + Stainless Steel structure
 - ✓ Backup option: Stainless Steel tank
 (⊘ ~ 38 m) + acrylic structure + balloon

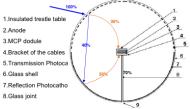
Important issues:

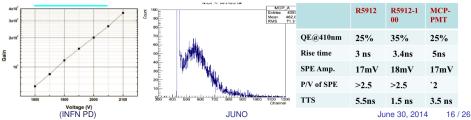
- ✓ engineering (mechanics, safety, ...)
- ✓ physics (cleanliness, light collection, ...)
- assembly and installation



(INFN PD)

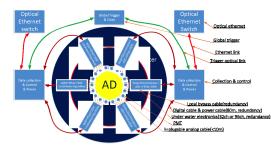
The Liquid Scintillator


- Scintillator base: Linear Alkyl Benzene
- Current mixture: LAB + PPO + BisMSB
- Requirements:
 - Long attenuation length
 - Improved production process
 - High purified material (process: distillation, filtration, water extraction, nitrogen stripping, ...)
 - Highest Light Yield: optimization of flourine concentration
- Othe important requirements:
 - Controlling energy non-linearity
 - Aging
 - Engineering issue: treatment of 20 ktons
 - Raw material selection: background & purity issues

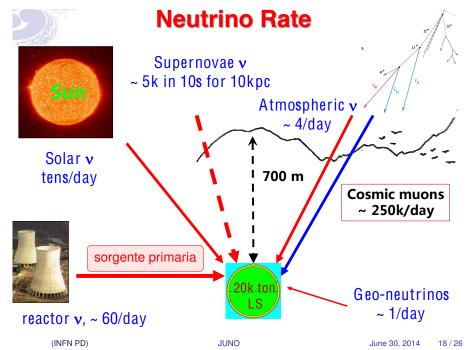

Linear Alky Benzene	Atte. L(m) @ 430 nm
RAW	14.2
Vacuum distillation	19.5
SiO ₂ coloum	18.6
Al ₂ O ₃ coloum	22.3
LAB from Nanjing, Raw	20
Al ₂ O ₃ coloum	25

High QE PMT

- Three types of high quantum efficiency PMTs are under development:
 - ✓ Hamamtsu R5912-100 with Super Bialkaly photocathode
 - Photonis PMT
 - ✓ A new design using Micro Channel Plates: 4π collection efficiency
- MCP-PMT development:
 - ✓ technical issues mostly solved
 - ✓ successful 8" prototypes produced/tested
 - ✓ few 20" prototypes produced



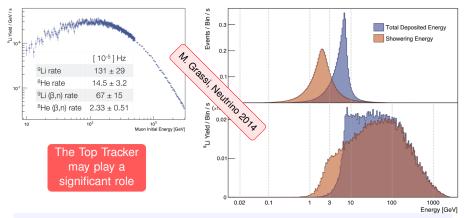
Trigger and Readout Electronics


Charge and timing info (1 GHz FADC)

(Number of Channels	20000
1	Event Rate	\sim 50 kHz
	Charge precision	1-100 p.e.: 0.1-1 p.e.; 100-4000 p.e.: 1-40 p.e.
	Noise	0.1 p.e.
\langle	Timing	$0-2\ \mu s:\sim 100\ ps$

Baseline: dry electronics Option: in-water electronics

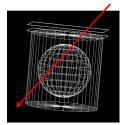
In case of in-water electronics: ✓group PMT per 100 ch ✓global trigger on surface



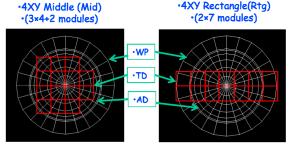
Cosmic Muons in JUNO

(INFN PD)

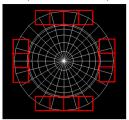
⁹Li Background in JUNO

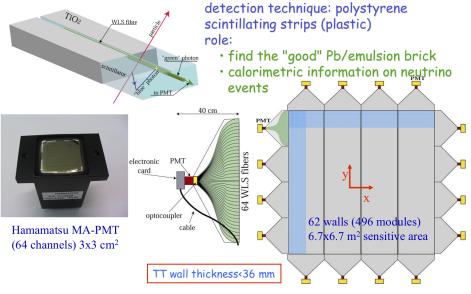


⁹Li is one of the most important backgrounds in JUNO


The Kamland veto scheme to showering muon events brings a 100% deadtime New rejection schemes must be studied according to JUNO muon tracking capabilities

The JUNO Top Tracker

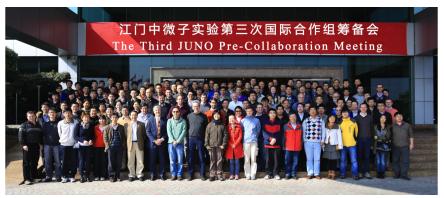

- Possibility to reuse the OPERA Target Tracker for JUNO
- + 62 planes, sensitive area: $6.7\times6.7~m^2$
- with x-y readout coordinates (read from both sides)
- A first attempt to optimize the existing TT planes has been performed: the 4XY Rectangle option is preferred


investigation on how to improve the Top Tracker coverage is under investigation

•4XY Around("O") •(2×4+2×3 modules)

The OPERA Target Tracker

(INFN PD)


JUNO

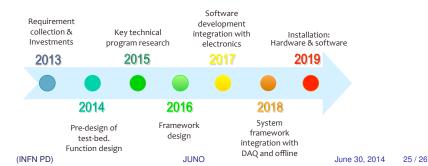
June 30, 2014 22 / 26

La collaborazione - JUNO

- Una proto collaborazione esiste dal 2013
- La Collab. sarà definita al prossimo meeting (Pechino, 28-30 Luglio 2014)

La collaborazione - JUNO Europa

• Items di interesse comuni:


✓ Top Tracker (FR+IT), PMT electronics (DE), LAB purification (IT+DE), ...

Prossimo meeting JUNO-Europa a Milano (9 luglio)

JUNO Status

- The project has been approved by CAS for R&D and design
- Geological survey completed:
 - ✓ Granite rock, little water, $T \sim$ 31 °C
- EPC contract signed:
 - Engineering design by July 2014
 - Construction work starting in November 2014
- The collaboration is preparing a CDR and a Yellow Book on JUNO Physics

Task Sharing will be defined by the end of 2014

JUNO a Padova

- Persone interessate:
- 🗸 Brugnera, Dusini, Garfagnini, Lippi, Mezzetto, Sirignano, Stanco
- a breve decideremo le percentuali e le richieste finanziarie per il 2015 (in accordo con gli altri gruppi italiani)
- ✓ forte sinergia in divenire con i gruppi italiani (per esempio LNF per TT) ed europei
- Argomenti di possibile interesse (dipende da \sum FTE):
- Top Tracker (elettronica e rivelatore)
- ✓ DAQ (globale) ed elettronica dei PMT
- ✓ test dei PMT da 8" (insieme a Milano)
- Richieste alla Sezione per il 2015:
- ✓ supporto da officina elettronica per Top Tracker (da definire dopo il 9 luglio)
- ✓ supporto da ufficio tecnico (da definire dopo il 9 luglio)