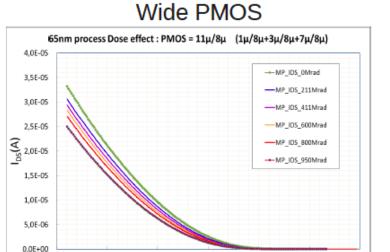
ScalTech28

INFN Proposal (Gr. 5)
Milano-Bicocca, Padova, Pavia + EPFL (& CERN)
June, 30th, 2014

Low-power rad-hard circuit design in scaled technologies

... send some scouts in advance

The problem

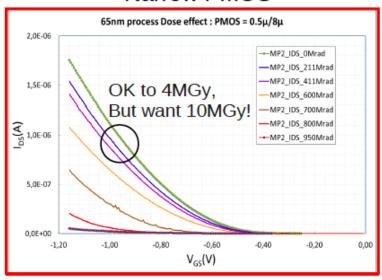

- •Future Experiments read-out will have to face two key problems
- An extremely large radiation dose
- •Up to 1Grad in 10years
- Much larger than in any previous situation
- An extremely large number of channels
- Increasing power consumption
 - ◆ New electronics has to be designed
 - To guarantee rad-hard performance
 - •To reduce power consumption
- Open questions
 - •Which technology to be adopted?
 - Which circuit solutions to be used in scaled technologies?
 - Circuit solutions depend on adopted technology

Radiation damage vs. technology choice

- •→ Technology scaling helps Radiation Hardness
- ◆ Research activity to investigate scaled technology potentiality
- Present CERN installation → 130nm
- ◆→ Research activity 90nm and 65nm
- •→ INFN-Chipix65 & CERN-RD53
- Parameter for technology choice
 - Transistor analog features
 - Proper design techniques
 - Technology access
 - Robustness
 - Availability
 - Costs
 - Rad-hard performance

Rad-hard performance in 65nm technology

65nm could be not sufficiently rad'hard (at 1Grad)

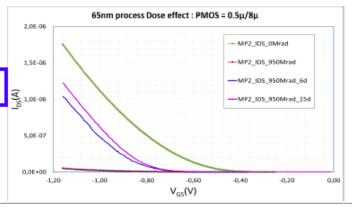


-0,60

 $V_{GS}(V)$

-0.40

Narrow PMOS



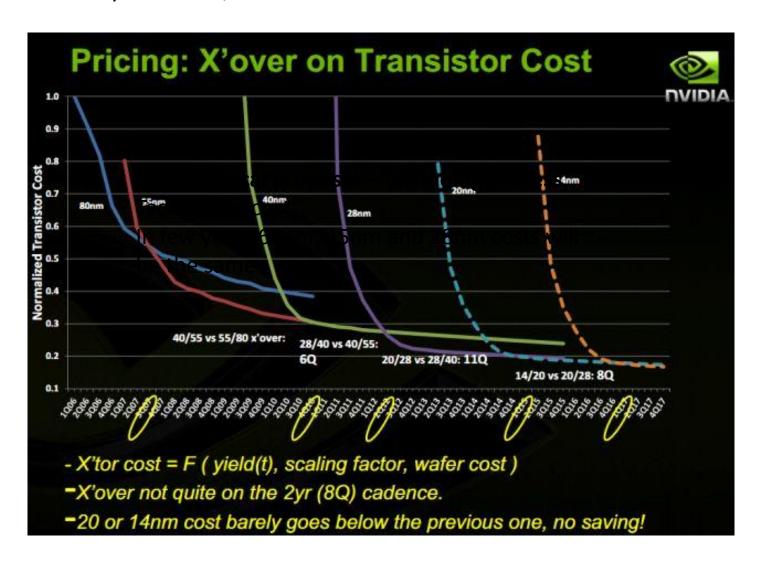
Annealing helps

-0,20

0,00

(From ATLAS UW pixel module session)

-1,20


-1,00

-0.80

The technical proposal – Technology access

Technology cost

In few years 65nm, 45nm and 28nm costs will be the same

ScalTech28

The technical proposal – Technology access

•EUROPRACTICE

- delivers 45nm TSMC prototypes
- does not allow 28nm open access
- •BUT
- Selected "Pilot sites" can access to 28nm for key project with final prototyping
- MiBicocca is selected to be a "Pilot site"

ScalTech28

The technical proposal – The Research Partners

- ScalTech28 (INFN Founded project)
- •INFN-MiB (Baschirotto) with Alessandro Marchioro (CERN) support
- Project coordination
- Prototype run coordination
- Rad-Hard LP-AFE design
- Optical link
- INFN-PD (Bisello)
- Prototype radiation
- Radiation damage measurement
- INFN-PV (Malcovati)
- Rad-Hard LP-MS/D design
- •EPFL-Neuchatel (Enz) Founded by Swiss NFS
- •SPICE EKV model of irradiated devices for simulations

ScalTech28 The technical proposal

- •Basic question ??
 - •What is the best tech-node for future implementations in terms of
 - Radiation hardness to 1Grad
 - Low-power consumption
 - Technology access (availability, cost, etc..)

Proposal activity

- •Select an advanced tech-node → 28nm
- Study radiation damage effects
- Design few significant blocks in 28nm Scaled Technology
- Rad-hard (RH) & Low-power (LP)
- •Compare the achieved results with similar activities in different nodes
- •→ Take the best technology node choice for final production
- Develop a simulation environment for circuit with radiation damaged devices

ScalTech28 The technical proposal – Blocks & Specs

- Single devices
 - MOS (different sizes)
 - Passive (Capacitors and resistors)
- Complete blocks
 - Analog read-out Front-End (AFE)
 - Mixed-Signal/Digital (MS/D)
 - Optical link (TIA)
- •To have a fair comparison of achieved performance in different tech-nodes
 - •→ Target specs defined in parallel to other running activities in different tech-nodes
 - •For example
 - •AFE → RD35/Chipix65
 - •MS/D → PIXFEL
 - Optical link → GB-TIA link

ScalTech28The technical proposal – Project management

Work F	ackage	Leader	Unit			
WP1	Project management (including chip integration)	Andrea BASCHIROTTO	Milan-Bicocca			
WP2	Radiation Hardness	Dario BISELLO	Padova			
WP3	Digital/Mixed-Signal Electronics	Piero MALCOVATI	Pavia			
WP4	Analog FE Electronics & Optical Transceiver	Marcello DE MATTEIS	Milan-Bicocca			
WP5	Radiation Damage Modeling	Christian ENZ	EPFL			

ScalTech28 Activity scheduling – GANTT Chart

Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	1	1	1													8	8	8	8	8	8	8	8	8
INFN-MiB			4	4	4	4	4	4	4	4	4	9	9	9	9									
	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10									
INFN-PD	1	1	1					3	3	3	6	6	6	6		3	3	3	8	8	8			
INFN-PV			4	4	4	4	4	4	4	4	4	9	9	9	9	8	8	8	8	8	8	8	8	8
EPFL	1	1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
External				2	2	2	2					5	5	5	5									
Europractice				Z	2	2	Z					ر	,	,	ر									

1st prototype Layout	1
1st Silicon Fabrication	2
Prototype irradiation	3
2nd prototype Design&Layout	4
2nd Silicon Fabrication	5
1st Prototype measurement	6
Radiation damage model development	7
2nd Prototype Measurement	8
Board design	9
Optical Transceiver	10

ScalTech28 Budget summary (two years activity) – in k€

Prototype fabrication	225 k€	64%		
●Two runs				
•Consumables & Service	59 k€	17%		
Instrumentation (HW&SW)	28 k€	8%		
•Travels	39 k€	11%		

- •6.50 FTE x 2 years activity
- → 9.6k **€/(FTEyear)**

ScalTech28 Padova partecipation & requests

D. Bisello	10%	
A. Paccagnella	20	Budget
A. Candelori	20	
L. Ding	40	Consumables 15.0 keuro
L. Silvestrin	30	Travels 6.5 "
J. Wyss	30	
X.Y.	30	

OM . 1m/u

LOE: 8 m/u

ScalTech28 INFN Advantages

ScalTech28

uses reduced amount of manpower performs a deep investigation on the potentiality of the most advanced IC technology available for 2020 production

INFN will the 1st HEP research institute to investigate on this technology

Strategic know-how will be available If positive feedback

→ Larger investment will be allocated for further and more dedicated development for HEP experiments

→ Know-how will be migrated also to other key application medical, instrumentation, etc...