Data Transmission system based on copper and fibers

Summary

- DU communication strategy
- All-fiber approach
 - Current Nemo solution
- Hybrid approach
 - Copper Link requirements
 - Link implementation
 - Complete Copper Node block diagram
 - Reduced Copper Node block diagram
 - Mezzanine design
 - Board form factor
- Conclusions

DU communication links

- ▶ The DU connection to on-shore must be optical:
 - distance is about 100 km
 - ▶ aggregate data rate from floors is high (~Gb/s)
- ▶ The DU backbone can be either optical or electrical
 - link are tens or hundreds of meters long
 - data rate can be as small as 100 Mb/s

all-optical solution

- ▶ long haul: fiber
- ▶ DU backbone: fiber

hybrid solution

- ▶ long haul: fiber
- ▶ DU backbone: copper

Current solution: optical backbone Add & Drop based

New generation of Nemo storey electronics

- Integrated readout
- Environment instrumentation interface
- communication mezzanine (Nemo-like)

DU Layout

Two contiguous arms of a DU (~40 m far apart) define an isosceles tetrahedron whose short and long sides are 20 m and 42.4 m long respectively. Therefore any two vertices of adjoining floors are 42.4 m apart (about 50 m).

Copper Link requirements

- Constraints:
 - applicable to both Twisted Pairs or Coax cables
 - length of a single hop (maximum 50m)
 - max data rate of a copper chain (~1.25 Gb/s)
- Copper Node Features:
 - the chain is synchronous
 - auto-identification of nodes
 - payload can be dynamically allocated
 - the node is designed as a plug-in module which can be seen as a "transceiver" by a host board
 - each node is reprogrammable
 - node power consumption is very low (~2W)

Link Implementation: Full Daisy Chain Scheme

The link is bidirectional with asymmetric data rates:

- Up-going link @163.84 Mb/s for timing and slow control
- Down-going link @1.18 Gb/s for physics data and control

Pros
•Higher up-going speed
•Nodes are identical

Cons
•Higher Power
•Failure stops hi

• Failure stops higher floors

Complete Copper Node Block Diagram

- pluggable mezzanine board
- ▶ stand-alone for debug
- ▶ interface SerDes-like
- ▶ no user intervention for PHY management
- ▶reprogrammable on-the-fly
- dynamic allocation of payload

Copper Node prototype board

- Only the slow "Master" chain is implemented
- Items under test:
 - clock recovering and cleaning with PLL (max p-p jitter: 105ps);
 - slow channel data Rx and Tx;
 - stand-alone or FPGA driven
 - no definite line interface in order to test different cables

Master Chain Implementation

- Rx clock&data recovery;
- Tx @ same Rx rate;
- line clock cleaning;
- line clock multiplication for high speed chain;
- SMA connectors for line interface.

Building the system

- External Driver and Equalizer allow different cables
- Impedance matching boards can be inserted

Mezzanine board form factor

- The chosen form-factor is the Nemo mezzanine interface:
 - well defined form factor
 - performances guaranteed up to involved data rates
- Possible testing boards:
 - directly pluggable into Nemo FCM (Spartan3 device)
 - in-directly pluggable into Xilinx ML50x series (V5)

The FCM

Xilinx ML50x adapter: the EtherFcm

The ML50x stack...

Conclusions regarding copper node prototype

- simple test and debug;
- first samples are arriving next week;
- test of clock and data integrity on slow chain;
- board testing: stand-alone or FPGA driven;
- the daisy-chain protocol can be designed & implemented;
- physical layer flexibility: different cables can be used;

Trading more backbones for reliability

- Multiple Backbones means redundancy but also an increase in power, cost, complexity;
- Reducing the number of PMs per backbone reduces the overall rate increasing hop length: single node failure could be sectioned out!
- DU JB must mux-demux multiple backbones or use multiple colors;
- DU JB contains electronics to bridge copper and fiber.
- An independent communication line is dedicated to power management, backbone sectioning (in case of failure), and slow control functions over a single twisted pair.

Concluding Remarks

- As many electro-optical transceivers as backbones per DU (with one color per direction per transceiver) are needed.
- One fiber per DU is required; groups of DU can be muxdemux by using DWDM.
- Simple electrical backbone based on 50m long tracts.
- Impact of cables and connectors evaluated separately.
- A procedure for node-to-node timing calibration is under development.
- Dynamical bandwidth allocation allows complete chain flexibility and reconfigurability.
- All the backbone communication burden (bandwidth negotiation, etc.) is user transparent.