WP2 status

Paris, 15/10/2008

JP Ernenwein

Available inputs:

"String" Designs

Summary for simulation

Detection Unit (DU)	Parameter in	Improved Antares String	Cabled Design
	simulation	Design (default values)	(default values)
Total length DU	yes	600 m	600 m
Height lowest storey	yes	100 m	100 m
Distance between DUs	yes	95 m	95 m
Distance between storeys	yes	25 m	25 m
# OM per storey		3	1
Outer diameter glass vessel	yes	432 mm	432 mm
Inner diameter glass vessel	yes	404 mm	404 mm
Breaking index glass		1.472	1.472
Breaking index optical interface		-	-
Thickness optical interface		-	~ 2 mm
# PMTs per OM		1	31
Diameter PMT		10"	3"
Q.E. PMT (nominal)	yes	32%	42%
See wavelength dependence in			
figures below			
L0 definition		Threshold of 0.3 spe	Threshold of 0.3 spe
L1-a definition		L0 in two OMs at the same	LO in two adjacent PMTs in
		storey within 20 ns	the same OM within 10 ns
L1-a Purity		100%	100%
L1-a Efficiency		100%	100%
L1-b definition		Threshold of 3 spe in one	the same OM within 10 ns 100% 100% -
		OM	615
L1-b Purity		95%	-
L1-b Efficiency		~25%	-

Preliminary, V3.4 14/10/2008

Available inputs:

"	ver"	De	sia	ın
				,

	-	
Parameter	Value	
Number of towers	91	
Distance between towers	130 m; 150 m	
Layout	Uniform hexagon (figure 3, table 2)	Cente
Height of the lowest storey	100 m	
(N _{storeys} , D _{between storeys} , L _{arm}) instrumented height (m)	(20,30,8) ₅₇₀ ; (16,40,10) ₆₀₀ ; (20,30,6) ₅₇₀ : Perpendicular arms	
Number of PMTs per storey	4;6;8	
Arrangement of PMTs in a storey	Pairs regularly positioned along the arm	
Orientation of PMTS	A pair = 1 horizontal+ 1 downwards looking PMT A pair = 60° looking downward for each PMT (figure 4)	
Size of PMTs	8" or 10"	
Angular acceptance of PMTs	ANTARES one (Genova measurements)	
Electronics resolution (mainly PMT TTS)	1.5 ns	
2 hits time separation	25 ns	
Dynamic range	100 pe/25 ns; tests of higher values for muons and showers.	
QE of PMTs	35% (eg Photonis XP1804 or Hamamatsu R7081)	
L0 definition	Amplitude > 1/3 pe	
L1 definition	Coincidence within 20 ns (Δt <20 ns) or Q > 3pe	
T3 definition	2L1 on one storey within 50-100 ns	
Reconstruction strategy	Two independent reconstruction strategies	
Angular resolution and Effective area	Computed under the condition that the atmospheric muon background is less than 10% of the atmospheric neutrino signal	
Physics criterion	E ⁻² point source fluxes sensitivity Dark matter sensitivity E ⁻² diffuse flux sensitivity, for muon neutrinos and for electron neutrinos	2
Physics criterion	E ⁻² diffuse flux sensitivity, for muon neutrinos and for electron neutrinos	

PMTs orientations and typical distances

Comparison between designs: tools and criteria

	-
L0 definition	Amplitude > 1/3 pe
L1 definition	Coincidence within 20 ns (Δt <20 ns) or Q > 3pe
T3 definition	2L1 on one storey within 50-100 ns
Reconstruction strategy	Two independent reconstruction strategies At least
Angular resolution and Effective area	Computed under the condition that the atmospheric muon background is less than 10% of the atmospheric neutrino signal
Physics criterion	E ⁻² point source fluxes sensitivity Dark matter sensitivity
Physics criterion	E ⁻² diffuse flux sensitivity, for muon neutrinos and for electron neutrinos

Comparison between designs : softwares

String Design Tower Design

Optimization
with 1 software
comparison
with at least 2

The final optimization will include atmospheric muons background, at 3 depths.

ANTARES/NEMO KM3TRAY (ANIS, Sirene ...) HOU software

Mathematica
Other in developpement (Demokritos)

Time Scale:

31 / 01 / 2009

a full document describing each optimized design is requested by the PCC

Webmaster: Thierry Stolarczyk

Updated: 14 oct. 2008 **KM3NeT**

Home | Meetings | Members and tasks | Physics and analysis | Tools | Milestones

Home

Home | Meetings | Members and tasks | Physics and analysis | Tools | Milestones

KM3NeT Physics and Analysis

Updated: 13 oct. 2008

Members and tasks

Who's doing what

reliminary

Home | Meetings | Members and tasks | Physics and analysis | Tools | Milestones

This page collects the information related to the WP2 and WPD task sharing in the consortium.

The list needs to be updated? Contact your coordinators.

Name	First name	Institute	in	n out Main activity	
Auer	Ralf	Univ-Erlangen/ECAP			Shower studies, KM3Tray framework
Baret	Bruny	CNRS/APC			Detector optimization
Bigongiari	Ciro	IFIC			Simulations of Optical Beacon calibration, water optical properties, light scattering modelling
Brunner	Juergen	CNRS/CPPM			ANTARES software, CC Lyon
Carminati	Giada	INFN/Bologna			Mupage, KM3Tray Framework

Get the correspond Excel file.

Mailing lists

Attempt to gather WP2ers activities in a single location and synthetic way.

List incomplete and not exact, currently filled according to some email exchange : please give some feed-back

Coniglione	Rosa	INFN/LNS	ANTARES/NEMO software : studies of tower design. Optimization.
Distefano	Carla	INFN/LNS	ANTARES/NEMO software : studies of tower design. Optimization
Dornic	Damien	CNRS/CPPM	MATHEMATICA software : detector optimization
dos Santos Assis Jesus	Ana Carolina	Nikhef	KM3Tray Framework, detector optimization (String Design)
Eberl	Thomas	Univ-Erlangen/ECAP	KM3Tray framework
Ernenwein	Jean-Pierre	CNRS- CPPM	WP2 coordinator
Kavatsyuk	Oksana	Gronignen/KVI	Detector optimization, KM3Tray Framework
Kooijman	Paul	Nikhef	Sirene
Kopper	Claudio	Univ-Erlangen/ECAP	KM3Tray Framework
Lenis	Dimitris	Demokritos	Depth studies (atm muon background), PMT orientation issue, G4 software and Sirene, reconstruction strategies
Markou	Christos	Demokritos	Depth studies (atm muon background), PMT orientation issue, G4 software and Sirene, reconstruction strategies
Naumann	Christopher	CEA Irfu	MATHEMATICA software : detector optimization
Presani	Eleonora	Nikhef	String design optimization, KM3Tray framework (Sirene)
Rapidis	Petros		WPD coordinator
Sapienza	Pierra	INFN/LNS	ANTARES/NEMO software : studies of tower design. Optimization.
Shanidze	Rezo	Univ-Erlangen/ECAP	ANTARES software : detector studies (string type with small or large PMTs), shower studies
Stavropoulos	Georgios	NESTOR	Depth studies (atm muon background), PMT orientation issue, G4 software and Sirene, reconstruction strategies
Stolarczyk	Thierry	CEA Irfu	WPD coordinator
Tsirigotis	Apostolos	Patras/HOU	Detector optimization, HOU software
Umberto	Emanuele	IFIC	Detector optimization, KM3Tray Framework, calibration
Vecchi	Manuela	INFN/Roma	KM3Tray Framework, detector optimization

Home | Meetings | Members and tasks | Physics and analysis | Tools | Milestones

Also in construction: a task table

Software links and reference files

WP2 Presentations during this meeting:

Univ-Erlangen (ECAP, Rezo Shanidze): ECAP in KM3NeT WP2

INFN/LNS: Rosa Coniglione & Piera Sapienza:

Tower Design Optimization Studies

CEA/IRFU: Christopher Nauman: Synthesis of detector studies