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Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.

123

momentum of e+e-, and so to extract BR we want x large, i.e.,no photon

x<0.95 but still is 
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As model independent as possible:

Cutcosky rules provides the imaginary part
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Assuming |A|2 � (ImA)2

 A !q2" # 2i
q2

Z d4k
!2

q2k2 $ !qk"2
!k2 % i""!!k$ q"2 % i""!!k$ p"2 $m2

e % i""
F!"&"& !$k2;$!k$ q"2"; (4)

where q2 # m2
!, p2 # m2

e. We put the sign minus in the
arguments of the form factor explicitly to emphasize that
Eq. (4) is written in the Minkowski space. The form factor
is normalized as F!"&"& !0; 0" # 1 and falls down quite
rapidly in the Euclidean region of momenta to provide
the ultraviolet convergence of the integral. A number of
model calculations of the amplitude A!q2"was performed
[4,8–13] by employing different shapes of the form factor
F!"&"& . We discuss some of them below.

The aim of the present paper is to calculate the branch-
ing ratio B!!0 ! e%e$" and estimate the uncertainties by
using the available experimental and theoretical informa-
tion on the pion transition form factor. In particular, the
important constraints follow from the results obtained by
the CELLO and CLEO collaborations and restrictions set
by QCD.

First, we derive a suitable representation for the ampli-
tude in Eq. (4) which would help us to perform a straight-
forward analysis by using the available information on the
pion transition form factor. To do this, we employ the
dispersive approach to the calculation of the amplitude
developed in many papers (see, e.g. [12] and references
therein). The imaginary part of the amplitude in Eq. (4)

 

ImA!q2" # !
2#e!q2" ln!ye!q2"";

ye!q2" # 1$ #e!q2"
1% #e!q2" ;

(5)

comes from the contribution of real photons in the inter-
mediate state and is model independent since
F!"&"& !0; 0" # 1. Using jAj2 ' !ImA"2 and neglecting
radiative corrections one can get the well-known unitary
bound for the branching ratio in Eq. (3) [8]

 B!!0 ! e%e$" ' Bunitary!!0 ! e%e$" # 4:69 ( 10$8:
(6)

A once-subtracted dispersion relation for the amplitude
in Eq. (4) is written as [12]

 A !q2" #A!q2 # 0" % q
2

!

Z 1
0
ds

ImA!s"
s!s$ q2" : (7)

The second term in Eq. (7) takes into account strong q2

dependence of the amplitude around the point q2 # 0
occurring due to the branch cut coming from the two-
photon intermediate state. Integrating Eq. (7) one arrives
for q2 ' 4m2

e at [14–16]

 

ReA!q2" #A!q2 # 0" % 1

#e!q2"

!
1
4

ln2!ye!q2"" % !
2

12

% Li2!$ye!q2""
"
; (8)

where Li2!z" # $
Rz

0!dt=t" ln!1$ t" is the dilogarithm
function.1 For the pion in the leading order in !me=m!"2,
one gets

 ReA!m2
!" #A!q2 # 0" % ln2

#
me

m!

$
% !

2

12
: (9)

Thus, the nontrivial dynamics is only contained in the
subtraction constant A!q2 # 0". We evaluate this quantity
in the following way [10]. We use the double Mellin
representation for the pion transition form factor reducing
the integral in Eq. (4) to the convolution of propagatorlike
expressions. Then we perform the loop integration by using
the standard Feynman $ representation. Finally, we are
able to expand the integral over the ratios of the electron
and pion masses to the characteristic scale of the pion form
factor ! / m% by closing the Mellin contours in the ap-
propriate manner and take the leading term of expansion.
We arrive at the following representation:

 A !q2 # 0" # 3 ln
#
me

&

$
% 'P!&"; (10)

where the constant 'P!&" is defined by

 'P!&" # $
5
4
% 3

2

Z 1
0
dt ln

#
t
&2

$@F!"&"& !t; t"
@t

# $ 5
4
$ 3

2

!Z &2

0
dt
F!"&"& !t; t" $ 1

t

%
Z 1
&2
dt
F!"&"& !t; t"

t

"
; (11)

with F!"&"& !t; t" being the physical pion transition form
factor given in symmetric kinematics for spacelike photon
momenta t # Q2 # $q2 > 0. One has to note that the
logarithmic dependence on the scale & appearing in
Eq. (10) as a result of the decomposition of the integral
over the dimensional variable t into two parts is compen-
sated by the scale dependence of the low-energy constant

1For completeness we give explicit expressions for the ampli-
tude ~A!q2" #A!q2" $A!0" for different regions of q2:
Re ~A!q2"# 1

#!q2")Li2!$y!q2""%!2

3 % 1
4ln2!$y!q2""*, Im ~A!q2"#

0, for q2 + 0; and Re ~A!q2" # $ 1
~#!q2"Cl2!$2(", Im ~A!q2" #

$ !
~#!q2" arctg) ~#!q2"*, for 0 + q2 + 4m2. Here #!q2" #
%%%%%%%%%%%%%%%%%%%%%%%%%
1$ 4m2=q2

p
, ~#!q2" #

%%%%%%%%%%%%%%%%%%%%%%%%%
4m2=q2 $ 1

p
, ( # arctg)1= ~#!q2"*,

and Cl2!z" # $
Rz

0 dt lnj2 sin!t=2"j is the Clausen’s integral.

ALEXANDER E. DOROKHOV AND MIKHAIL A. IVANOV PHYSICAL REVIEW D 75, 114007 (2007)

114007-2

(doesn’t depend on TFF)
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As model independent as possible:

Cutcosky rules provides the imaginary part

Dissection of π0→e+e-

q2 = m2
P

Use dispersion relations to get the real part

10MesonNet2014, Frascati, 30 Sep



Pere Masjuan

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

Pseudoscalar contribution to (g � 2)HLbyLµ
P ! `` (PRELIMINARY)

Dissectioning the ⇡ ! e

+
e

�

• The ⇡ ! e

+
e

� decay provides the best scenario for such discussion.
• Try the most model-independent approach we can.

Cutcosky rules provides the imaginary part of this integral

ImA(q2) =
⇡

2�l(q2)
ln

✓
1� �l(q2)

1 + �l(q2)

◆
; �l(q

2) =

s

1� 4m2
l

q

2

Use dispersion relation to get the real part

Substraction term gets all the e↵ects from the TFF behavior.
⇤From now on I will quote results in the chiral limit m⇡ ! 0

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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As model independent as possible:

Cutcosky rules provides the imaginary part

Dissection of π0→e+e-

q2 = m2
P

Use dispersion relations to get the real part
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`

BR(P ! ``)

BR(P ! ��)
= 2

✓
↵m`

⇡mP

◆2

�`(m
2
P)|A(m2

P)|2

The only unknown A(m2
P) from loop calculation where the TFF enters.

A(q2) =
2i

⇡2

Z
d

4
k

q

2
k

2 � (k · q)2
k

2(k � q)2((p � k)�m

2
`)

FP�⇤�⇤(k2, (q � k)2)

FP��(0, 0)

At this point: input your favorite model and integrate.
This gives no insight!

Pablo Sánchez Puertas Mesons transition FFs using Padé approximants

= 19 · 10�8

Im(A(m2
P )) ⇠ 17.5 Re(A(m2

P )) ⇠ 30.7

(Kernel=0)

⇠ 1.5 · 10�10
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= 19 · 10�8

Im(A(m2
P )) ⇠ 17.5 Re(A(m2

P )) ⇠ 30.7

(Kernel=0)

Z 1

0
dQ2Kernel(Q2) ⇠ �17 ! KTeV ⇠ 7.5 · 10�8
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Pablo Sánchez Puertas Mesons transition FFs using Padé approximants
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Dissection of π0→e+e-

Re(A(m2
P )) =

Z 1

0
dQ2Kernel(Q2) + 30.7

all in all, old the models give the same value
Z 1

0
dQ2Kernel(Q2) ⇠ �20 ! BR ⇠ 6.3 · 10�8
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Pseudoscalar contribution to (g � 2)HLbyL
µ
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Dissectioning the ⇡ ! e

+
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�

• The ⇡ ! e

+
e

� decay provides the best scenario for such discussion.
• Try the most model-independent approach we can.
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PA
large-Nc
cPT
VMD

Most of values smaller than experiments average
Have this in mind for discussion
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Current situation with Proper Names
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• Ways to improve from theory side:
• Dubna (Dorokhov, Ivanov,...): Include all kind of 
corrections me/mπ, me/Λ (which also means not using 
DR)
• Prague (Novotny, Kampf, Husek...): Improve on 
radiative corrections
• Mainz (Masjuan, Sanchez-Puertas...): Improve on the 
implementation of the TFF
• Consider New Physics contributions

Dubna+Prague+Mainz(?)
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Dubna contribution: corrections me/mπ, me/Λ

Dorokhov and Ivanov, ’07

Used VMD to confront KTeV measurement 
(also compare different models for TFF)

F⇡�⇤�⇤(Q2, Q2) = F⇡��(0, 0)
1

1 +Q2/Q2
0

with Q0 from a monopole fit to CLEO+CELLO data

O
✓
me

m⇡

◆2
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Dubna contribution: corrections me/mπ, me/Λ

O
✓
me

m⇡

◆2

Dorokhov and Ivanov, ’08

O
⇣me

⇤

⌘2
O
⇣me

⇤

log

me

⇤

⌘2

Dorokhov, Ivanov and Kovalenko ’09

O
⇣m⇡

⇤

⌘2

BRSM(⇡0 ! e+e�) = (6.23± 0.09)⇥ 10�8 ⇠ 3�

Resummation of power corrections using Mellin-Barnes techniques.
Conclusion: corrections negligible!

Λ 
the cut-off 

or
 VMD “mass”
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Prague contribution: Radiative corrections

Eur. Phys. J. C (2014) 74:3010 Page 3 of 11 3010

Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We

123

Bergstrom ’83: approach (soft-photon+cut-off) to two-loop QED 
radiative correction + Dalitz decay interference 

Before Prague:
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Fig. 4. Radiative corrections normalized to the lowest order width 
F~ ~ ~_ as a function of 5, where the acceptance for the invariant 
mass of the lepton pair is (l-5)m~<__s<m~. Here only the two- 
photon electromagnetic contribution to F~~ as calculated in [1] 
is included 
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Fig. 5. Total radiative corrections as a function of 5 for two dif- 
ferent values of p, which is the lowest order branching ratio in 
units of the unitary lower bound 

function 6tad(x) is given in [12], and we have inte- 
grated (26) numerically using that expression. 

To be definite, we first assume that only the elec- 
tromagnetic part as calculated in [1] contributes to 
~~ e-.  Under this assumption, the situation is 
as summarized in Fig. 4. As can be seen, the total 

correction is rather large and negative (around 
- 20 %) for values of 6 in the range of 1-5 %, which 
should be typical values for most experiments. For 
larger values of 6 the background from single Dalitz 
pairs rapidly becomes dominant. In Fig. 5, the total 
correction is shown for both a small ("standard") 
and a rather large value of p, the lowest order 
branching ratio. It can be seen that for a resolution 
6 better than around four per cent the corrections 
are not very sensitive to the value of p. It is also in 
this region that the approximations made in this 
paper can be most trusted (since the emission of soft 
photons should not depend too much on the struc- 
ture of the vertex). However, if the precision is in- 
creased to much better than 1%, then the correc- 
tions become so big that a higher order calculation 
is needed. We finally note that the formulas in this 
paper can be trivially modified to other decays with 
a large mass ratio, r / ~ e + e  , t / c ~ # + #  -,  etc, For 
~/~p+/~- we expect the radiative corrections to be 
small since the mass ratio is small. 
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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(a) (b)

χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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can write the theoretical prediction for the branching ratio
measured by KTeV as

B(π0 → e+e−(γ ), x > 0.95) = #LO(π0 → e+e−)

#(π0 → γ γ )

× B(π0 → γ γ )[1 + δ(2)(0.95)+%BS(0.95)+δD(0.95)],
(16)

where the only experimental input is the precise branching
ratio B(π0 → γ γ ) = (98.823 ± 0.034) %. In the above
formula,

δD(xcut) = 1
#LO(π0 → e+e−)

∫ 1

xcut
dx
(

d#Dalitz

dx

)NLO

1γ I R

= 1.75 × 10−15

[#LO(π0 → e+e−)/MeV] (17)

corresponds to the unsubtracted fraction of the Dalitz decay
background4 omitted in the KTeV analysis and discussed
in [3,14]. In what follows we will concentrate on the last
missing ingredient of the formula (16), namely

%BS(xcut) ≡ δBS(xcut) − δBS
soft(xcut), (18)

which is the difference between the exact bremsstrahlung and
its soft photon approximation. This difference has been only
roughly estimated in [3] and this estimate has been taken as
a source of the error. Our aim is to calculate %BS exactly and
test the adequacy of the soft photon approximation for the
cut xcut = 0.95 used in the KTeV analysis.

4 Bremsstrahlung

In this section, we discuss the above mentioned exact
bremsstrahlung (BS), i.e. the real radiative correction cor-
responding to the process π0 → e+e−(γ ) beyond the soft-
photon approximation. As a consequence of the gauge invari-
ance, the invariant amplitude for the BS correction,

M(λ)(p, q, k) ≡ ε
∗ρ
(λ)(k)MBS

ρ (p, q, k) (19)

(where k and ε
∗ρ
(λ)(k) is the photon momentum and polariza-

tion vector, respectively), has to satisfy the Ward identity

kρMBS
ρ = 0 (20)

4 This fraction comes form the contribution of the interference term of
the NLO one-photon-irreducible (1γ I R) graph with the leading order
Dalitz amplitude. See [3] and [14] for more details.

for on-shell k and thus it can be generally expressed in the
form [14]

iMBS
ρ (p, q, k) = ie5

8π2 F
× {P(x, y)[(k · p)qρ − (k · q)pρ][ū(p, m)γ5v(q, m)]
+A(x, y)[ū(p, m)[γρ(k · p) − pρ(k · γ )]γ5v(q, m)]
−A(x,−y)[ū(p, m)[γρ(k · q) − qρ(k · γ )]γ5v(q, m)]
+T (x, y)[ū(p, m)γρ/kγ5v(q, m)]} (21)

in terms of the scalar form factors P , A, and T . These
are functions of two independent kinematic variables (x, y),
defined as

x = (p + q)2

M2 , y = − 2
M2

[
k · (p − q)

1 − x

]

x ∈ [ν2, 1] , y ∈



−
√

1 − ν2

x
,

√

1 − ν2

x



 . (22)

As mentioned above, x is the Dalitz variable (i.e. a normal-
ized square of the total energy of e+e− pair in their CMS)
and y has the meaning of a rescaled cosine of the angle
included by the directions of outgoing photon and positron
in the e+e− CMS. The modulus squared of the amplitude has
the form [14]

∣∣MBS(x, y)
∣∣2 ≡

∑

polarizations

∣∣M(λ)(p, q, k)
∣∣2 =

= 16πα5

F2

M4(1 − x)2

8

{
M2[x(1 − y2) − ν2][x M2|P|2

+2νM Re{P∗[A(x, y) + A(x,−y)]} − 4 Re{P∗T }]
+2M2(x − ν2)(1 − y)2|A(x, y)|2 + (y → −y)

−8νMy(1 − y) Re{A(x, y)T ∗} + (y → −y)

−4ν2 M2 y2 Re{A(x, y)A(x,−y)∗} + 8(1 − y2)|T |2
}

(23)

and using the variables x , y the differential decay rate is

d#BS(x, y) = M
(8π)3

∣∣MBS(x, y)
∣∣2(1 − x) dx dy. (24)

To the amplitude M(λ)(p, q, k) five Feynman diagrams con-
tribute (cf. Fig. 3). Four of them correspond to the photon
emission from the outgoing fermion lines (see Fig. 3a–d).
Naively, one would expect that only these four diagrams are
necessary to consider since only they include IR divergences
which are needed to cancel the IR divergences stemming
from the virtual corrections (see graph d in Fig. 2 and the
corresponding one-loop diagram with counterterm). How-
ever, this result would not be complete.
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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Table 1 Numerical values of χ (r) in different models according to [1,3].
The first two columns denoted as CLEO+OPE and QCDsr correspond
to various treatments of CLEO data. LMD+V is an improvement of the
LMD ansatz and NχQM stands for the nonlocal chiral quark model

Model CLEO+OPE QCDsr LMD+V NχQM

χ (r)(Mρ) 2.6 ± 0.3 2.8 ± 0.1 2.5 2.4 ± 0.5

lowest meson dominance (LMD) approximation to the large-
NC spectrum of vector-meson resonances, yielding [13]

χ (r)(Mρ) = 2.2 ± 0.9, (11)

where Mρ = 770 MeV is the mass of the ρ meson. For
other alternative estimates cf. Table 1 and for the complete
discussion see [1].

Using the value (11) we get for the π0 → e+e− branching
ratio numerically

BLO
SM(π0 → e+e−) = (6.1 ± 0.3) × 10−8. (12)

3 Two-loop virtual radiative corrections

The full two-loop virtual radiative (pure QED) corrections
of order O(α3 p2) were calculated in [3]. In this section we
will present a short review of the main results.

The relevant contributions to the amplitude are shown in
Fig. 2. There are six two-loop diagrams. Listed sequentially,
we have two vertex corrections (a, b), electron self-energy
insertion (c), box-type correction (d), and two vacuum polar-
ization insertions (e, f). Of course, for every such diagram
a one-loop graph with corresponding counterterm must be
added to renormalize the subdivergences. The relevant finite
parts of these counterterms can be fixed by the requirement
that the parameters m and α coincide with their physical val-
ues. After the subdivergences are canceled, the remaining
superficial divergences has to be renormalized by another
additional tree counterterm with coupling ξ . The finite part
ξ (r)(µ) of this coupling has been estimated in [3] using its
running with the renormalization scale as

ξ (r)(Mρ) = 0 ± 5.5. (13)

Besides the UV divergences, the graph d in the Fig. 2 is
also IR divergent. It is therefore necessary to consider IR-
safe decay width of the inclusive process π0 → e+e−(γ )

with additional real photon in the final state. In [3] the real
photon bremsstrahlung has been taken into account using the
soft-photon approximation. The final result depends on the
experimental upper bound on the soft photon energy which
can be expressed in terms of the lower bound xcut on the

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Two-loop virtual radiative corrections for π0 → e+e− process

Dalitz variable x (see 2). The result can be expressed in terms
of the correction factor δ(xcut) defined as

(NLO(π0 → e+e−(γ ), x > xcut)

≡ δ(xcut)(LO(π0 → e+e−), (14)

where (LO is the leading order width and (NLO is the next-
to leading O(α3 p2) correction. The xcut dependent overall
correction δ(xcut) has various sources and to emphasize the
origin of its constituents, we will use the same symbol dec-
orated with appropriate indices. For the complete QED two-
loop correction δ(2) including soft-photon bremsstrahlung
and KTeV cut xcut = 0.95, in [3] one obtained

δ(2)(0.95) ≡ δvirt. + δBS
soft(0.95) = (−5.8 ± 0.2) %, (15)

where only the uncertainties of χ (r) and ξ (r) were taken as
the source of the error. This result differs significantly from
the previous approximate calculations done by Bergström [7]
or Dorokhov et al. [10], where for δ(2)(0.95) we would get
−13.8 and −13.3 %, respectively.

There is a simple interrelation of this partial result of
the QED radiative corrections and the branching ratio (3)
obtained by KTeV experiment (for the details see [3]). We
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can write the theoretical prediction for the branching ratio
measured by KTeV as

B(π0 → e+e−(γ ), x > 0.95) = #LO(π0 → e+e−)

#(π0 → γ γ )

× B(π0 → γ γ )[1 + δ(2)(0.95)+%BS(0.95)+δD(0.95)],
(16)

where the only experimental input is the precise branching
ratio B(π0 → γ γ ) = (98.823 ± 0.034) %. In the above
formula,

δD(xcut) = 1
#LO(π0 → e+e−)

∫ 1

xcut
dx
(

d#Dalitz

dx

)NLO

1γ I R

= 1.75 × 10−15

[#LO(π0 → e+e−)/MeV] (17)

corresponds to the unsubtracted fraction of the Dalitz decay
background4 omitted in the KTeV analysis and discussed
in [3,14]. In what follows we will concentrate on the last
missing ingredient of the formula (16), namely

%BS(xcut) ≡ δBS(xcut) − δBS
soft(xcut), (18)

which is the difference between the exact bremsstrahlung and
its soft photon approximation. This difference has been only
roughly estimated in [3] and this estimate has been taken as
a source of the error. Our aim is to calculate %BS exactly and
test the adequacy of the soft photon approximation for the
cut xcut = 0.95 used in the KTeV analysis.

4 Bremsstrahlung

In this section, we discuss the above mentioned exact
bremsstrahlung (BS), i.e. the real radiative correction cor-
responding to the process π0 → e+e−(γ ) beyond the soft-
photon approximation. As a consequence of the gauge invari-
ance, the invariant amplitude for the BS correction,

M(λ)(p, q, k) ≡ ε
∗ρ
(λ)(k)MBS

ρ (p, q, k) (19)

(where k and ε
∗ρ
(λ)(k) is the photon momentum and polariza-

tion vector, respectively), has to satisfy the Ward identity

kρMBS
ρ = 0 (20)

4 This fraction comes form the contribution of the interference term of
the NLO one-photon-irreducible (1γ I R) graph with the leading order
Dalitz amplitude. See [3] and [14] for more details.

for on-shell k and thus it can be generally expressed in the
form [14]

iMBS
ρ (p, q, k) = ie5

8π2 F
× {P(x, y)[(k · p)qρ − (k · q)pρ][ū(p, m)γ5v(q, m)]
+A(x, y)[ū(p, m)[γρ(k · p) − pρ(k · γ )]γ5v(q, m)]
−A(x,−y)[ū(p, m)[γρ(k · q) − qρ(k · γ )]γ5v(q, m)]
+T (x, y)[ū(p, m)γρ/kγ5v(q, m)]} (21)

in terms of the scalar form factors P , A, and T . These
are functions of two independent kinematic variables (x, y),
defined as

x = (p + q)2

M2 , y = − 2
M2

[
k · (p − q)

1 − x

]

x ∈ [ν2, 1] , y ∈



−
√

1 − ν2

x
,

√

1 − ν2

x



 . (22)

As mentioned above, x is the Dalitz variable (i.e. a normal-
ized square of the total energy of e+e− pair in their CMS)
and y has the meaning of a rescaled cosine of the angle
included by the directions of outgoing photon and positron
in the e+e− CMS. The modulus squared of the amplitude has
the form [14]

∣∣MBS(x, y)
∣∣2 ≡

∑

polarizations

∣∣M(λ)(p, q, k)
∣∣2 =

= 16πα5

F2

M4(1 − x)2

8

{
M2[x(1 − y2) − ν2][x M2|P|2

+2νM Re{P∗[A(x, y) + A(x,−y)]} − 4 Re{P∗T }]
+2M2(x − ν2)(1 − y)2|A(x, y)|2 + (y → −y)

−8νMy(1 − y) Re{A(x, y)T ∗} + (y → −y)

−4ν2 M2 y2 Re{A(x, y)A(x,−y)∗} + 8(1 − y2)|T |2
}

(23)

and using the variables x , y the differential decay rate is

d#BS(x, y) = M
(8π)3

∣∣MBS(x, y)
∣∣2(1 − x) dx dy. (24)

To the amplitude M(λ)(p, q, k) five Feynman diagrams con-
tribute (cf. Fig. 3). Four of them correspond to the photon
emission from the outgoing fermion lines (see Fig. 3a–d).
Naively, one would expect that only these four diagrams are
necessary to consider since only they include IR divergences
which are needed to cancel the IR divergences stemming
from the virtual corrections (see graph d in Fig. 2 and the
corresponding one-loop diagram with counterterm). How-
ever, this result would not be complete.
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(a) (b)

χ

(c)

χ

(d)

(e)

Fig. 3 Bremsstrahlung Feynman diagrams for π0 → e+e− process
including counterterms

The reason is that the Ward identity (20) would be violated.5

Thus it is necessary to add the third (box) diagram (Fig. 3e,
photon emitted from the inner fermion line) to fulfill this
relation.

In the graphs Fig. 3a and b the πγ γ vertex stems from
the Wess–Zumino–Witten action [15,16] and the remaining
vertices correspond to standard QED Feynman rules. These
graphs are UV divergent by power counting and have to be
regularized. In what follows, we use the dimensional reg-
ularization. In order to bypass the problems with intrinsi-
cally four-dimensional objects like γ5 and the Levi-Civita
pseudo-tensor εµναβ , we use its variant known as Dimen-
sional Reduction6 (cf. [17]), which keeps the algebra of γ -
matrices four-dimensional, while the loop tensor integrals
are regularized dimensionally and expressed in terms of
the scalar one-loop integrals using the Passarino–Veltman

5 Note that in the framework of the soft-photon approximation the sum
of these four graphs satisfies the Ward identity by itself.
6 Note, however, that in the general case the regularization by dimen-
sional reduction might spoil gauge invariance. In the case of our ampli-
tude, we have checked that the gauge invariance is preserved and the
regularized amplitude has the general form (21).

reduction [18]. Within this framework we first get rid of the
Levi-Civita tensor using the four-dimensional identities, e.g.

εαβµνγµγν = iγ5[γ α, γ β ]
εαβµνγµγργν = 2iγ5(gα

ργ β − gβ
ρ γ α),

(25)

and then contract the reduced tensor integrals with the γ -
matrix structures.7 The contributions of the box diagram
Fig. 3e turn out to be finite, while the triangle diagrams Fig. 3a
and b contain subdivergences which have to be renormalized
by means of the tree graphs with counterterms corresponding
to the coupling χ (see Fig. 3c, d). Summing all the relevant
contributions and using the four-dimensional Dirac algebra,
we get finally the form factors P , A, and T , the explicit form
of which is summarized in Appendix A.

The differential decay rate d)BS(x, y) (cf. 24) give rise
to IR divergences when integrated over the phase space. The
divergences originate from the soft-photon region

|k| <
1
2

M(1 − xcut), (26)

which is defined in terms of the variables (x, y) by means of
the cut on the Dalitz variable x > xcut. These divergences
are exactly the same as those stemming from an analogous
integral of the differential decay rate d)BS

soft(x, y) calculated
within the soft-photon approximation. The latter is already
included in the two-loop result [3], we therefore present our
result for the exact BS as the difference

d)BS
diff(x, y) = d)BS(x, y) − d)BS

soft(x, y), (27)

the integral of which is IR finite. The result for d)BS
diff(x, y)

is shown in Fig. 4 and (integrated over the allowed region of
y given by 22) in Fig. 5. For *BS(xcut) we get finally

*BS(xcut) = 2
∫ 1

xcut

∫ √
1−ν2/x

0

d)BS
diff(x, y)

)LO(π0 → e+e−)
. (28)

The dependence of *BS(xcut) on xcut is shown in Fig. 6. For
xcut = 0.95 and for χ (r) given by (11) we get numerically

*BS(0.95) = (0.30 ± 0.01) %, (29)

where the error stems from the uncertainty in χ (r)(Mρ). In
other words, using this cut of the Dalitz variable in the KTeV
experiment, the soft-photon approximation is a very good
approach to the exact result. The dependence of *BS(0.95)

on χ (r) is shown in Fig. 7.

7 According to the prescription [17], we take the metric tensors
stemming from the Passarino–Veltman reduction effectively as four-
dimensional.
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• Ways to improve from theory side:
• Dubna (Dorokhov, Ivanov,...): Include all kind of 
corrections me/mπ, me/Λ (which also means not using 
DR)
• Prague (Novotny, Kampf, Husek...): Improve on 
radiative corrections
• Mainz (Masjuan, Sanchez-Puertas...): Improve on the 
implementation of the TFF
• Consider New Physics contributions

Dubna+Prague+Mainz(?)
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Remember: only low-energy region is needed
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We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics
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We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics
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sequence of approximations, i.e., theoretical error

Our proposal: use Padé Approximants

We need low-energy region (data driven) + high-energy tail
we don’t want a model rather a method providing systematics

[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]



Fit to Space-like data: CELLO’91, CLEO’98, BABAR’09 and Belle’12
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Accurate description of the low-energy region making full use of available experimental data
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Figure 1. ⇡0 (left upper panel), ⌘ (right upper panel), and ⌘0 (lower panel) TFFs. Green-dot-dashed lines show
our best PL

1 (Q2) fit, and black-solid lines show our best PN
N(Q2) fit. Black-dashed lines display the extrapolation of

the PN
N(Q2) at Q2 = 0 and Q2 ! 1. Experimental data are from CELLO (red circles), CLEO (purple triangles),

and BABAR (orange squares) Colls. [8]. The ⇡0 figure contains also data from BELLE (blue diamonds) [9]; and
the ⌘0 figure data from L3 (blue diamonds) [10].

Table 1. ⇡0, ⌘, and ⌘0 slope bP, curvature cP, asymptotic limit, and contribution to HLBL.

bP cP limQ2!1 Q2FP�⇤�(Q2) aHLBL;P
µ

⇡0 0.0324(22) 1.06(27) · 10�3 2 f⇡ 6.49(56) · 10�10

⌘ 0.60(7) 0.37(12) 0.160(24)GeV 1.25(15) · 10�10

⌘0 1.30(17) 1.72(58) 0.255(4)GeV 1.27(19) · 10�10

and obtain, in such a way, the derivatives of the FP�⇤�(Q2) at the origin of energies in a simple,
systematic and model-independent way [5, 6].

Since the analytic properties of TFFs are not known, the kind of PA sequence to be used is not
determine in advance. We consider two di↵erent sequences and the comparison among them should
reassess our results. The first one is a PL

1 (Q2) sequence inspired by the success of the simple vector
meson dominance ansatz [5], and the second one is a PN

N(Q2) sequence which satisfy the pQCD
constrains Q2FP��⇤ (Q2) ⇠ constant. After combining both sequence’s results, slope and curvature
results are shown in Table 1, where limQ2!1 Q2FP�⇤�(Q2) from the PN

N(Q2) is also shown.
The low-energy parameters obtain with this method can be used to constrain hadronic models with

resonances used to account for the hadronic light-by-light scattering contribution part (HLBL) of the

Our proposal: use Padé Approximants
[P.M.’12; R. Escribano, P.M., P. Sanchez-Puertas, ’13]
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F⇡0�⇤�⇤(Q2, Q2)BRSM (⇡0 ! e+e�) we need

Proposal: bivariate PA Chisholm ’73

PN
M (Q2
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2) + · · ·

Doubly virtual π0-TFF
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1Q
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For

[P.M., P. Sanchez-Puertas,  in preparation]
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Proposal: bivariate PA Chisholm ’73

a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data

P 0
1 (Q

2
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2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

Doubly virtual π0-TFF
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Proposal: bivariate PA Chisholm ’73

OPE indicates: lim
Q2!1

P 0
1 (Q

2, Q2) ⇠ Q�2

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

i.e., a1,1 = 2a21

Doubly virtual π0-TFF

a1

a1,1

from accurate study of space-like data

from a systematic fit to doubly virtual SL data
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Proposal: bivariate PA Chisholm ’73

0  a1,1  2a21

P 0
1 (Q

2
1, Q

2
2) =

a0
1 + a1(Q2

1 +Q2
2) + (2a21 � a1,1)Q2

1Q
2
2

Doubly virtual π0-TFF

BRPA
SM (⇡0 ! e+e�) = (6.22� 6.36)(4)⇥ 10�8

a1 from accurate study of space-like data

statistics+theoretical error

+ to shrink the window: data (data-driven approach) -- see apendix
method checked for different models
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BRw/o rad

"KTeV"(⇡
0 ! e+e�) = (6.87± 0.36)⇥ 10�8

BRPA
SM (⇡0 ! e+e�) = (6.22� 6.36)(4)⇥ 10�8

⇠ (2.6� 1.4)�

Doubly virtual π0-TFF
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Naive New Physics contributions

BR(⇡0 ! e+e�)

BR(⇡0 ! ��)
= 2
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2F⇡GF

4↵2F⇡��
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4mW
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◆2

⇥ fA(P )

�����

2

fA = cAe (c
A
u � cAd ) fP =

1

4
cPe (c

P
u � cPd )

m2
⇡

m2
⇡ �m2

P
c ⇠ O

✓
g

gSU(2)L

◆

BR(⇡0 ! e+e�)

BR(⇡0 ! ��)
= SM (1 + ✏Z,NP ⇥ 5%)

✏Z ⇠ 0.3%

✏NP ⇠ 0.3%

Z contribution (Arnellos, Marciano, Parsa ‘82)

Our estimate based on existing exp. constrains:

negligible!
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Impact of π0→e+e- on HLBL
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Model Published model Modified model

⇡0 ! e+e� HLBL ⇡0 ! e+e� HLBL

(⇥108) (⇥1010) (⇥108) (⇥1010)

Jegerlehner and Ny↵eler ’09 LMD+V 6.33 6.29 6.47 5.22

Dorokhov et al ’09 VMD 6.34 5.64 6.87 2.44

Our proposal ’14 PA 6.36 5.53 6.87 2.85

�aSM
µ ⇠ 6⇥ 10�10

�aHLBL;⇡0!e+e�

µ ⇠ (2� 3)⇥ 10�10

�aHLBL
µ ⇠ 4⇥ 10�10

+ similar effect for the η decay!



Conclusions
- π0→e+e- is an interesting process

- hadronic effects are important at all energies
- but the scale is at the electron mass

- Standard approaches fail to reproduce the KTeV 
experimental measurement

- something to be understood: corrections known, 
radiative known, TFF-data driven, no NP, ...?

- Its impact in the HLBL cannot be forgotten, it might be 
one of the largest uncertainties if the puzzle persists
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back-up



Dissection of the HLBL contribution
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• Extraction of meson TFF and HLBL

- Using CLEO, CELLO, BaBar and Belle to obtain the TFF Low-energy 
Constants, constrain hadronic model and estimation of π0-HLBL

Dissection of the HLBL contribution

aLbyL;⇡0

µ = e6
Z

d4Q1

(2⇡)4

Z
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(2⇡)4
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2
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2
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Using F⇡0�⇤�⇤(Q2
1, Q

2
2) ⇠ P 0

1 (Q
2
1, Q

2
2)

(main energy range from 0 to 1 GeV2)
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The role of doubly virtual TFF data

Pere Masjuan 53MesonNet2014, Frascati, 30 Sep

a model independent determination which error is smaller than anyone quoted in the liter-
ature so far. We conclude that even a rough estimation of such parameter with low energy
data would determine this quantity unambiguously to the best precision ever in a model-
independent way.

4.5 Pursuing the Experimental value

Finally, we try to reproduce the experimental value with the simplest P

0
1 approximant.

Therefore, we set the a1,1 parameter free and constrain it from the experiment. For conve-
nience, we parametrize the TFF

F̃⇡0�⇤�⇤(Q2
1, Q

2
2) =

1

1 + a1(Q2
1 +Q

2
2) + �a

2
1Q

2
1Q

2
2

, (17)

where �a

2
1 = 2a21 � a1,1. To reproduce the experimental value quoted by KTeV we need

� = (407, 94, 16)@(0, 1, 2)�. (18)

Taking into account he latest radiative corrections yields

� = (34, 4)@(0, 1)�. (19)

Finally, we show the double virtual TFF at equal virtualities for di↵erent values of �(a1,1)
quoted before in Fig 2.
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Figure 2: Di↵erent estimations for the double virtual TFF. The black line indicates the
factorized result. The blue band indicates our estimation 0  a1,1  2a21. The orange
line reproduces the KTeV quoted value at (0, 1)� and the purple one the result from latest
radiative corrections at (0, 1)�.

factorization: F⇡0�⇤�⇤(Q2, Q2) = F⇡0�⇤�(Q
2, 0)⇥ F⇡0��⇤(0, Q2)

our approach

KTeV KTeV + rad corr


