

Transition Form Factors (experiment overview - 1)

MATTEO MASCOLO

(on behalf of the KLOE-2 coll.)

MesonNet 2014 - September 28th – October 1st, 2014 - LNF

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

Talk Outline

- Introduction: Transition Form Factors
- Physics motivations
- ✓ KLOE results ($\phi \rightarrow \eta e^+ e^-$)
- ✓ KLOE results ($\phi \rightarrow \pi^0 e^+ e^-$)

Form Factors

QED \rightarrow the electromagnetic interaction between particles is given by the exchange of a virtual photon (γ^*) transferring the squared 4-momentum q²

Form Factors

QED \rightarrow the electromagnetic interaction between particles is given by the exchange of a virtual photon (γ^*) transferring the squared 4-momentum q²

Vector Meson Dominance

- ✓ The virtual photon interacts with the hadron through a n intermediate vector meson state with $J^{P} = 1^{-}$ (i.e. ρ , ω , ϕ)
- ✓ The mechanism is more pronounced in the annihilation process, where q^2 approaches the resonance mass → enhancement of the FF → the V meson decays as a real particle

Vector Meson Dominance

- ✓ The virtual photon interacts with the hadron through a n intermediate vector meson state with $J^{P} = 1^{-}$ (i.e. ρ , ω , ϕ)
- ✓ The mechanism is more pronounced in the annihilation process, where q^2 approaches the resonance mass → enhancement of the FF → the V meson decays as a real particle

Space-like FF: physics motivation (1/3)

✓ FF is a field of hadronic physics with high precision THEORY and EXPERIMENTS

✓ The SM prediction of this "deviation", the anomalous magnetic moment a_{μ} , defined as $a_{\mu} = (g-2)/2$, is calculated with high accuracy and measured with extreme precision!

BUT ...

$$a_{\mu}^{exp} = 116\,592\,089(54)_{\text{stat}}(33)_{\text{syst}} \times 10^{-11}$$
$$a_{\mu}^{SM} = 116\,591\,801(49) \times 10^{-11}$$

$$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 287(80)$$
 3.6 •

✓ 3.6 σ DISCREPANCY BETWEEN THEORY AND EXP.

✓ New g-2 experiment towards 0.14 ppm (JPARC 0.1 ppm) → Theory improvement !?!

Space-like FF: physics motivation (2/3)

✓ The SM calculation can be divided into different contributions:

✓ The "Light-by-Light" contribution to the hadronic term is the one which is known with the higher relative uncertainty $^{\gamma} <$

$$\begin{aligned} a_{\mu}^{QED} &= 116\,584\,718.09(0.15) \times 10^{-11} \\ a_{\mu}^{EW} &= 153(1)(1) \times 10^{-11} \\ a_{\mu}^{LO} &= 6\,923(42)(3) \times 10^{-11} \\ a_{\mu}^{HOVP} &= -98.4(0.7) \\ a_{\mu}^{LbL,PS} &= 99(16) \\ a_{\mu}^{LbL} &= 105(26) \\ \end{aligned}$$

(no data at low q²) to reduce the model dependence of the LbL (KLOE-2 [EPJC C72 (2012) 1917])

✓ The $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ decay width is an important ingredient for the FF normalization (|F(0,0)|²) → best measurement up to date is from PrimEx coll. : 2.8%. Strong test of Chiral theory (~ 1%)

 \checkmark yy processes give access to the single off-shell FF \rightarrow important to provide new measurements

Space-like FF: physics motivation (3/3)

✓ The calculation of the LbL term (of g-2) relies on phenomenological theories, who constrain F(PS*, γ^* , γ^*) and F(PS*, γ^* , γ) with experimental information \rightarrow i.e. *on-shell* π^0 FFs!

CELLO \rightarrow DESY [Beherend et al., Z. Phys C49 (1991) 401]

CLEO → CESR [Gronberg et al., Phys. Rev. D57 (1998) 33]

BaBar → SLAC [Aubert et al., Phys. Rev. D80 (2009) 052002]

Belle \rightarrow KEK [Uehara et al., Phys. Rev. D86 (2012) 092007]

✓ The $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ decay width is an important ingredient for the FF normalization (|F(0,0)|²) → best measurement up to date is from PrimEx coll. : 2.8%. Strong test of Chiral theory (~ 1%)

 \checkmark yy processes give access to the single off-shell FF \rightarrow important to provide new measurements

(no data at low q²) to reduce the model dependence of the LbL (KLOE-2 [EPJC C72 (2012) 1917])

Space-like FF: physics motivation (3/3)

✓ The calculation of the LbL term (of g-2) relies on phenomenological theories, who constrain F(PS*, γ^* , γ^*) and F(PS*, γ^* , γ) with experimental information \rightarrow i.e. *on-shell* π^0 TFFs!

CELLO \rightarrow DESY [Beherend et al., Z. Phys C49 (1991) 401]

CLEO → CESR [Gronberg et al., Phys. Rev. D57 (1998) 33]

BaBar → SLAC [Aubert et al., Phys. Rev. D80 (2009) 052002]

Belle → KEK [Uehara et al., Phys. Rev. D86 (2012) 092007]

Time-like (T)FF: physics motivation

✓ Test the modelings of the TFF: the naïve VMD approach is satisfactory in the description of $\eta \rightarrow \gamma \mu^+\mu^-$ but dramatically fails in $\omega \rightarrow \pi^0 \mu^+\mu^-$

Data

NA60 [In-In][Phys. Lett. B 677 260-266 (2009)]NA60 [p-A][Nucl. Phys. A 855 189-196 (2011)]Lepton-G[Phys. Lett. B 102 296-298 (1981)]

Theory

Terschlusen and Leupold [Phys. Lett. B 691 191 (2009)] Ivashyn S. [Prob. Atom. Sci. Tech. 2012N1 179 (2012)] Schneider, Kubis, Nieking [Phys. Rev. D86 054013 (2012)]

TFF from conversion decays: V \rightarrow P γ^*

✓
$$F_{\phi \eta \gamma^*}$$
 slope is needed: $b_{\phi \eta} = \Lambda^{-2} = dF(q^2)/dq^2 |_{q^2 = 0}$
F(q²,0) ≈ 1 + q²/ Λ^2

- ✓ NO DATA available for $F_{0,\pi0,\gamma^*}$ TFF (an enhancement due to ρ resonance is expected)
- ✓ TFFs also useful for $(g-2)_{\mu}$ → experimental constraints to the hadronic LbL contribution
- ✓ Improve the measurement of the B.R. ($\phi \rightarrow \pi^0 e^+ e^-$ is a OZI suppressed process)

BR decay	SND	CMD-2	PDG av.	Tot err.
$\phi \rightarrow \eta e^+ e^- (10^{-4})$	(1.19 ± 0.19 ± 0.12)	$(1.14 \pm 0.10 \pm 0.06)$	(1.15 ± 0.10)	~ 8.7 %
$\phi \rightarrow \pi^0 e^+ e^- (10^{-5})$	(1.01 ± 0.28 ± 0.29)	(1.22 ± 0.34 ± 0.21)	(1.12 ± 0.28)	~ 25 %

[J. Beringer et al. Phys. Rev. D 86 (2012)]

The KLOE/KLOE-2 experiments (π^0 TFF)

Measurement of the π^0 FF in two different kinematical regions of q^2

$\phi \rightarrow \pi^0 e^+ e$

- ✓ $q^2 > 0 \rightarrow F_{\phi \pi^0 \gamma^*}(q^2)$
- Based on the existent data sample (L_{int} = 1.7 fb⁻¹ from 2004/2005 data taking)

$e^+e^- \rightarrow e^+e^- \pi^0$

✓
$$q^2 < 0 \rightarrow F_{\pi^0 \gamma * \gamma *} (q_1^2, q_2^2)$$

 To be measured with the forthcoming KLOE-2 data taking campaign

The DAΦNE e⁺e⁻ collider @LNF

Double Anular Φ **Factory for Nice Experiments**

Main features:

- e^+e^- collider @ $\sqrt{s} = 1.02$ GeV
- 97m separate rings for e⁺e⁻
- Up to 120+120 bunches
- Max collision freq. \rightarrow 356 MHz

- $T_{\text{bunch}} = 2.7 \text{ ns}$

Best performances:

-
$$L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$$

- $L_{int} = 8 \text{ pb}^{-1}/\text{day}$

Data Sample:

- L_{int} = 2.5 fb⁻¹ (until march 2006)
- L_{int} = 300 pb⁻¹(collected off the Φ peak)
- KLOE-2 upgrade completed (expected 5 fb⁻¹ in next 3 years [Eur. Phys.J. C 68 (2010), 619])

The KLOE detector

INFN

INF

EmC Calorimeter

- Lead/scintillating fibers
- 98% coverage of 4π
- δΕ/Ε = 5.7% / √E(GeV)
- $\delta t = 57 \text{ ps} / \sqrt{E(\text{GeV})} + 100 \text{ ps}$

The KLOE detector

INF

Magnetic field ~0.5 T

INFN

MesonNet Meeting - Frascati, September 29th - October 1st, 2014

The analysis of $\phi \rightarrow \eta \ e^+e^- (\eta \rightarrow \pi^0\pi^0\pi^0)$

- ✓ The analysis is performed on 1.7 fb⁻¹ collected at $\sqrt{s} = M_{\phi} \approx 1.02$ GeV
- Pre-selection:
 - 2 tracks of opposite charge from IP
 - 6 photon-clusters candidates from IP

Selection:

- (400 < M_{6v}< 700) MeV
- (536.5 < M_{miss-ee}< 554.5) MeV)
- Cut to reject γ conversion on BP and DC walls
- TOF cut for e⁺e⁻ selection
- ~3 x 10⁴ evts selected, ~15% global efficiency (10% low mee to 35% at high mee)
 < 3% residual bkg contamination

TFF $\phi \rightarrow \eta e^+e^- (\eta \rightarrow \pi^0\pi^0\pi^0)$

- Good MC-Data agreement after bkg subtraction (~29600 evts)
- \checkmark $F_{0,1,\gamma^*}$ slope is extracted by:

- direct fit to the invariant-mass spectrum of the e⁺e⁻ pair to the Landsberg formula [L.G. Landsberg Phys. Rep. 128 301 (1985)]

$$\frac{d}{dq^{2}} \frac{\Gamma(\phi \to \eta e^{+} e^{-})}{\Gamma(\phi \to \eta \gamma)} = \frac{\alpha}{3\pi} \frac{|F_{\phi\eta}(q^{2})|^{2}}{q^{2}} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \times \left(1 + \frac{2m^{2}}{q^{2}}\right) \times \left[\left(1 + \frac{q^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2} q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} \times \left[\left(1 + \frac{2m^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3/2} + \frac{2m^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}} + \frac{2m^{2}}{(m_{\phi}^{2} -$$

folded with analysis efficiency and smearing effects

- fit to the extracted $|F_{\phi \eta \gamma^*}(m_{ee})|^2$

	Previous experiments	KLOE	
$b_{\phi\eta} = \Lambda_{\phi\eta}$ [GeV ⁻²]	SND (3.8 ± 1.8) [213 evts]	(1.17 ± 0.10 ^{+ 0.07} _{- 0.11})	
BR (φ → ηe⁺e⁻) (10⁻⁴)	SND (1.19 ± 0.22) CMD-2 (1.14 ± 0.12)	(1.075 ± 0.039)	
VMD	B.R. = 1.1 x 10 ⁻⁴	b _{φη} =1 GeV ⁻²	

TFF $\phi \rightarrow \eta e^+ e^- (\eta \rightarrow \pi^0 \pi^0 \pi^0)$

- ✓ Good MC-Data agreement after bkg subtraction (~29600 evts)
- \checkmark **F**_{φ η γ*} slope is extracted by:

- direct fit to the invariant-mass spectrum of the e⁺e⁻ pair to the Landsberg formula [L.G. Landsberg Phys. Rep. 128 301 (1985)]

$$\frac{d}{dq^{2}} \frac{\Gamma(\phi \to \eta e^{+} e^{-})}{\Gamma(\phi \to \eta \gamma)} = \frac{\alpha}{3\pi} \frac{|F_{\phi\eta}(q^{2})|^{2}}{q^{2}} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \times \left(1 + \frac{2m^{2}}{q^{2}}\right) \times \left[\left(1 + \frac{q^{2}}{m_{\phi}^{2} - m_{\eta}^{2}}\right)^{2} - \frac{4m_{\phi}^{2}q^{2}}{(m_{\phi}^{2} - m_{\eta}^{2})^{2}}\right]^{3}$$

folded with analysis efficiency and smearing effects

- fit to the extracted $|F_{\phi \eta \gamma^*}(m_{ee})|^2$

	Previous experiments	KLOE
$b_{\phi\eta} = \Lambda_{\phi\eta}$ [GeV ⁻²]	SND (3.8 ± 1.8) [213 evts]	(1.17 ± 0.10 ^{+ 0.07} _{- 0.11})
BR (φ → ηe ⁺ e ⁻) (10 ⁻⁴)	SND (1.19 ± 0.22) CMD-2 (1.14 ± 0.12)	(1.075 ± 0.039)
VMD	B.R. = 1.1 x 10 ⁻⁴	b _{φη} =1 GeV ⁻²

The $\phi \rightarrow \pi^0 e^+e^-$ analysis

MesonNet Meeting – Frascati, September 29th – October 1st, 2014

$\phi \rightarrow \pi^0 e^+e^-$: the actual situation

<u>NO DATA</u> available for $F_{\phi \pi 0 \gamma^*}$ TFF \rightarrow needed to test the theoretical models (ω decay)

The analysis of $\phi \rightarrow \pi^0 e^+e^-$

300

250

200

150

100

- ✓ Analysis performed on 1.7 fb⁻¹ from 2004/2005 collected at $\sqrt{s} \approx 1.02$ GeV
- ✓ Main bkgs: $e^+e^- \rightarrow e^+e^-\gamma\gamma$ and $\phi \rightarrow \pi^0\gamma$ (γ conversion or π^0 to Dalitz)
- Selection (main):
 - E_e< 460 MeV - 470 < E_{e+} + E_e < 750 MeV
 - 300 < E_{γ_1} + E_{γ_2} < 670 MeV
 - θ_{open} (ee) < 145° and 27° < θ_{open} ($\gamma\gamma$) < 57°
 - 90 < $M_{2\gamma}$ < 190 MeV
 - 80 < M_miss ^{ee} < 180 MeV
 - Cut to reject γ conv. on BP and DC walls
- ~ 14000 events selected (total bkg cont. ~30% with a global efficiency of ~ 14%)
 [CMD-2 ~70 events for B.R. measurement!]

$\phi \rightarrow \pi^0 e^+ e^-$: Data-MC agreement

$\gamma\gamma$ invariant mass

INFN

 $\phi \rightarrow \pi^0 e^+e^-$: preliminary

(...more from Patrik in next talk)

Thank you for your attention