Methods in Amplitude Analysis: theory, models and implementation

Adam Szczepaniak

Indiana University/JLab
-Constraints and Examples
-1-to-3 decay amplitude models
-KT Equations
-Collaboration strategy

Why Amplitude Analysis

Amplitude construction

(not the same as based on a a
Axiomatic S-matrix principles: microscopic model/theory, e.g. unitary diagrams vs Feynman diagrams)
-Crossing relations:

A(s,t) describes all processes related by line reversal
-Analyticity: Cuts determined by unitarity (i.e. in the physical region, continuation is complicated, Mandelstam representation known only for 4-point function) Asymptotic behavior ($\mathrm{A}\left(\mathrm{s}_{\mathrm{i}}\right)<\mathrm{si}_{\mathrm{i}} \mathrm{O}\left(\log \mathrm{s}_{\mathrm{j}}\right)$) Bound state poles

- Regge behavior: Analyticity of "the second kind"
-Global symmetries: EM, chiral, ...

-"All constraints are equal but some may be more equal then other"

$$
A(s, t)=\sum_{l}^{\infty}(2 l+1) f_{l}(s) P_{l}\left(z_{s}\right) \rightarrow \sum_{l}^{\text {finite }}(2 l+1) f_{l}(s) P_{l}\left(z_{s}\right)
$$

(s-channel) Isobar model

$$
(s-4) R^{2} \sim \frac{s-4}{m_{e}^{2}} \ll 1
$$

alternatively use t/u channel isobars

- When cross-channel channel singularities are all nearby, there are no known amplitudes that satisfy all Smatrix constraints
(except perturbatively, e.g. chiral p.t.)

$$
\begin{aligned}
M(\eta, \omega, \phi, \cdots) \rightarrow m+m+m\left(\pi^{+}, \pi^{-},\right. & \left.\pi^{0}, \cdots\right) \\
M & >\sim 3 m
\end{aligned}
$$

Two general class of models

- Two-body unitarization, of low partial waves
violate analyticity of the 2 nd kind
- Resonance/Regge Duality
violate analyticity of individual partial waves

- General properties:

in decay-channel, s,t,u become the Dalitz variables
-Partial waves:

$$
\begin{aligned}
A(s, t)=\sum_{l}^{\infty}(2 l+1) A_{l}(s) P_{l}\left(z_{s}\right) \\
A_{l}(s)=A_{l}^{R}(s)+A_{l}^{L}(s)
\end{aligned}
$$

-Two-body unitarity:

$$
\Delta A_{l}^{R}(s)=\rho(s) \frac{N_{l}(s)}{D_{l}^{*}(s)} A_{l}(s) \quad \frac{N_{l}(s)}{D_{l}(s)}=\mathrm{m}+\underset{\substack{l-\text { wave } \rightarrow \mathrm{m}}}{\mathrm{p} \rightarrow \mathrm{~m}}
$$

- Solution: (Frazer-Fulco/Omnes/Mandelstam)

$$
A_{l}(s)=A_{l}^{L}(s)+\frac{1}{D(s)} \int_{4 m^{2}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N_{l}\left(s^{\prime}\right) A_{l}^{L}\left(s^{\prime}\right)}{s^{\prime}-s}
$$

$A=A^{L}+A^{R}$

$$
A_{l}(s)=A_{l}^{L}(s)+\frac{1}{D(s)} \int_{4 m^{2}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N_{l}\left(s^{\prime}\right) A_{l}^{L}\left(s^{\prime}\right)}{s^{\prime}-s}
$$

can also be represented in the standard form

$$
A_{l}(s)=\frac{1}{D_{l}(s)}\left(G_{l}^{L}(s)=\int_{-\infty} \frac{d s^{\prime}}{\pi} \frac{D_{l}\left(s^{\prime}\right) A_{l}^{L}\left(s^{\prime}\right)}{s^{\prime}-s}\right)^{\text {left hand cut }}
$$

The solution depends on and generalized to inelastic case
AL
exact representation:

$$
A_{l}(s)=\frac{1}{D_{l}^{e l}(s)}\left(\sum_{n} a_{n}^{l} \omega_{L}^{n}(s)+\sum_{m} b_{m}^{l} \omega_{i n}^{m}(s)\right)
$$

Model examples (implementation of crossing defines the I.h.c)
-"product form"

$$
A(s, t, u)=\frac{f(s, t, u) \text { (analytical) }}{D_{0}(s) D_{0}(t) D_{0}(u)} \quad G_{0}^{L}(s)=f(s, t, u) \int_{-1} \frac{d z_{s}}{D_{0}(t) D_{0}(u)}
$$

-"sum form" = Khuri-Treiman (equation)

$$
\begin{aligned}
& A(s, t, u)=\frac{f_{0}(s)}{D_{0}(s)}-\frac{f_{0}(t)}{D_{0}(t)}+\frac{f_{0}(u)}{D_{0}(u)} \\
& A_{l}(s)=\frac{1}{D_{l}(s)} \int_{\mathbf{4} m^{2}} d s^{\prime} \frac{\rho\left(s^{\prime}\right) N_{l}\left(s^{\prime}\right) A_{l}^{L}\left(s^{\prime}\right)}{s^{\prime}-s}+A_{l}^{L}(s)
\end{aligned}
$$

General remarks

- Various forms satisfy: 2-body unitarity and crossing symmetry
-Can be analytically continued to the decay region
minor complications from anomalous thresholds
(Mandelstam/Kacser/Aitchison/Brehm)
- Can be extended to higher partial waves
-Analytical continuation of unitarity from 2-to-2 to 1-to-3 is not the same as imposing unitarity on 3-to-3 amplitude at the M-particle pole

Any model which truncate partial waves will

- Violate Mandelstam analyticity
- Have incorrect asymptotic behavior
- Violate analyticity in the complex-l plane
- Dual models (Veneziano) $\quad A(s, t)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(t))}{\Gamma(2-\alpha(s)+\alpha(t))}$

$$
A(s, t)=\sum_{k} \frac{\beta_{k}(t)}{k-\alpha(s)}=\sum_{l} \frac{\beta_{k}(s)}{k-\alpha(t)}
$$

$$
\begin{aligned}
& \mathcal{A}_{n}(s, t ; N)=\frac{2 n-\alpha_{s}-\alpha_{t}}{\left(n-\alpha_{s}\right)\left(n-\alpha_{t}\right)} \sum_{i=1}^{n} a_{n, i}\left(-\alpha_{s}-\alpha_{t}\right)^{i-1} \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N+1-n) \Gamma\left(N+n+1-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

Regge/Resonance duality

Can be generalized to any number of external particles

Can be extend to satisfy Mandelstam duality, but not known extensions to several trajectories

Regge

Dispersive analysis of $\omega / \phi \rightarrow 3 \pi$

Solution: (e.g. P-waves only)

$$
\begin{aligned}
& a^{R}(s)=\frac{1}{D(s)} \int_{4 m^{2}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}
\end{aligned}
$$

Easily generalized to inelastic case

$$
a^{R}(s)=\frac{1}{D^{e l}(s)}\left(\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N(s)\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}+A^{i n}(s)\right)
$$

el = only elastic cut \quad in = only inelastic cut

Dispersive analysis of $\omega / \phi \rightarrow 3 \pi$

Integral equation

$$
a^{R}(s)=\frac{1}{D^{e l}(s)}\left(\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right) N(s)\left(s^{\prime}\right) A^{L}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} a_{i} \omega^{i}(s)\right)
$$

- $\mathrm{w}(\mathrm{s})$ is the conformal map of inelastic contributions:

Coefficients ai play the role of improved subtraction constants

Niecknig et. al. 2012
Anisovich et. al. 1998

all details in: I. Danilkin et al., arXiv1076363

Dalitz plots

- Only one parameter (overall normalization) \rightarrow fixed from $\Gamma_{\text {exp }}(\omega / \phi \rightarrow 3 \pi)$
- $\boldsymbol{\phi} \rightarrow \mathbf{3 \pi}$: distribution clearly shows ρ-meson resonances
- $\boldsymbol{\omega} \rightarrow \mathbf{3} \boldsymbol{\pi}$: distribution is relatively flat;
- upcoming high-statistic data from CLAS, KLOE, WASA, etc.
I. Danilkin et al.

Transition form factors: $\omega / \phi \rightarrow \pi \gamma$

$$
f_{V \pi}(s)=\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\Delta f_{V \pi}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} C_{i} \omega^{i}(s)
$$

Black: standard VMD (fails to describe the data)

Blue: $\quad \mathrm{N}=0$
(C_{0} from $\Gamma_{\text {exp }}(V \rightarrow \pi \gamma)$)
Red: $\mathrm{N}=1$
Green: $\mathrm{N}=2$
(fit to the data)

Nature of the steep rise? Exp. analysis of $\phi \rightarrow \pi \gamma$ is very important
I. Danilkin et al.

Transition form factors: $\omega / \phi \rightarrow \pi \gamma$

$$
f_{V \pi}(s)=\int_{4 m^{2}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\Delta f_{V \pi}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} C_{i} \omega^{i}(s)
$$

Black: standard VMD (fails to describe the data)

Blue: $N=0$
(C_{0} from $\Gamma_{\exp }(\mathrm{V} \rightarrow \pi \gamma)$)
Grey: $\mathrm{N}=0$
(no 3b effects)

$\mathrm{Mase}(\mathrm{Pl}+\mathrm{Pl}-)$

coe(Thetres)

cos(Theta_9)

(a)

(d)

ose(Theitul)

P.Guo, D.Schott, et al.

Joint Physics Analysis Center (JPAC)

theory

Name
Last modified Size Description
double complex function A(garma,target, recoil,pip,pim,
,ambda_g, lambda_t, lambda_r.
params)
mplicit double precision ($a-h, 0-z$)
dimension garma(4)
dimension target (4)
dimension recoil(4)
dimension pip(4),pim(4)
dimension params(100)
double complex Ampl
$s=\left(\right.$ gamma(4) + target(4)) $\boldsymbol{\omega}^{2}-($ gamma(1) $+\operatorname{target}(1)) \omega_{2}$

$s 1=(p i p(4)+p i m(4)) \cdot * 2-(p i p(1)+p i m(1)) * * 2$
(pip(2)+pim(2)) ${ }^{2}-($ pip(3) + pim(3) $) * *$

(p12) (4)) (p) (1)

$\mathrm{t} 1=(\operatorname{target}(4)-$ recoil(4) $) *{ }^{*}-($ target(1) - recoil $(1)){ }^{* 2}$ (target(2)-recoil(2)) ${ }^{2}-($ target $(3)-$ recoil(3) $) \cdots 2$
call Ath(s, s1, s2,t1, t2,lambda_g,lambda_t,lambda_r, params, Ampl)
$\mathrm{A}=\mathrm{Ampl}$
return
end
experiment

Parent Directory
到 g12 data EBin26 95.txt.gz 05-Aug-2014 08:27 349M
14) g12 mc gen.txt.gz 05-Aug-2014 12:13 385M
14. g12 mc rec.txt.gz

05-Aug-2014 12:13 82M
working on CLAS data now
η and ω codes will be available online
"generic" parametrizations will be available online

