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Why Amplitude Analysis  

Experimental Measurement
 QCD Measurement Physics quantities: form 

f a c t o r s , r e s o n a n c e 
parameters masses, etc.

Reaction 
amplitudes

dσMeasured  = Detector 
Acceptance ⨂ dPS |A|2



Amplitude construction
(not the same as based on a a 
microscopic model/theory, e.g. unitary 
diagrams vs Feynman diagrams) 

Axiomatic S-matrix principles:

•Analyticity: Cuts determined by unitarity (i.e. in the physical 
region, continuation is complicated, Mandelstam 
representation known only for 4-point function) 
Asymptotic behavior  ( A(si) <  si O(log sj) )  
Bound state poles

•Crossing relations:  
t

s A(s,t)
A(s,t) describes all 
processes related 
by line reversal 

•Regge behavior: Analyticity of “the second kind”

•Global symmetries: EM, chiral, … t

us



•“All constraints are equal but some may be more 
equal then other”
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• When cross-channel channel singularities are all 
nearby, there are no known amplitudes that satisfy all S-
matrix constraints   

M(⌘,!,�, · · · ) ! m+m+m (⇡+,⇡�,⇡0, · · · )
M >⇠ 3m

Two general class of models 

• Resonance/Regge Duality 

violate analyticity of the 2nd kind 

violate analyticity of individual partial waves 

J =
1

2⇡�
M2 = ↵0M2

σ trajectory

• Two-body unitarization, of low partial waves

(except perturbatively, e.g. chiral p.t.)



s-channel: M(1) + m̄(2̄) ! m(3) +m(4)

s = (p3 + p4)
t = (p4 � p2̄)

2 = (p4 + p2)
2

u = (p3 � p2̄)
2 = (p3 + p2)

2

1

2
_

3
4

in decay-channel, s,t,u become the Dalitz variables 

A(s, t) =
1X

l

(2l + 1)Al(s)Pl(zs)

Al(s) = AR
l (s) +AL

l (s)

•Partial waves:

•Two-body unitarity:

�AR
l (s) = ⇢(s)

Nl(s)

D⇤
l (s)

Al(s)
Nl(s)

Dl(s)

l-wave   
= m + m → m + m 

p.w

• General properties: 

(Frazer-Fulco/Omnes/Mandelstam)•Solution:

Al(s) = AL
l (s) +

1

D(s)

Z

4m2

ds0

⇡

⇢(s0)Nl(s0)AL
l (s

0)

s0 � s



D-1

N
ALAL=

A = AL + AR

and generalized to inelastic case
The solution depends on AL

(unitary diagrams)

Al(s) = AL
l (s) +

1

D(s)

Z

4m2

ds0

⇡

⇢(s0)Nl(s0)AL
l (s

0)

s0 � s

left hand cut
Al(s) =

1

Dl(s)

✓
GL

l (s) =

Z

�1

ds0

⇡

Dl(s0)AL
l (s

0)

s0 � s

◆
can also be represented in the standard form

exact representation: 

Al(s) =
1

Del
l (s)
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Model examples

A(s, t, u) =
f(s, t, u)

D0(s)D0(t)D0(u)

(analytical)

•“product form”

•“sum form” = Khuri-Treiman (equation)

A(s, t, u) =
f0(s)

D0(s)
+

f0(t)

D0(t)
+

f0(u)

D0(u)

Al(s) =
1

Dl(s)

Z

4m2

ds0
⇢(s0)Nl(s0)AL

l (s
0)

s0 � s
+AL

l (s)

GL
0 (s) = f(s, t, u)

Z

�1
1

dzs
D0(t)D0(u)

(implementation of crossing defines the l.h.c) 



General remarks 

• Various forms satisfy: 2-body unitarity and crossing symmetry 

•Can be extended to higher partial waves

•Can be analytically continued to the decay region

•Analytical continuation of unitarity from 2-to-2 to 1-to-3 is 
not the same as imposing unitarity on 3-to-3 amplitude at 
the M-particle pole 

•Violate Mandelstam analyticity 
•Have incorrect asymptotic behavior 
•Violate analyticity in the complex-l plane 

minor complications from anomalous thresholds 
(Mandelstam/Kacser/Aitchison/Brehm)

Any model which truncate partial waves will 



• Dual models (Veneziano) A(s, t) =
�(1� ↵(s))�(1� ↵(t))

�(2� ↵(s) + ↵(t))

A(s, t) =
X

k

�k(t)

k � ↵(s)
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FIG. 1: Spectrum in the s-channel of the generalized
Veneziano amplitude model of Eq. 1. The leading and daugh-
ter Regge trajectories are marked by thin solid lines and res-
onances by dots at integer values of spin (l). The dashed
and dotted thick lines illustrate resonance contributes to in-
dividual amplitudes, A2,1 and A4,3, respectively. All (infinite
number) of resonances on and to the right of the dashed line
contribute to A2,1, while resonances on and to the right of the
dotted line contribute to A4,3.

leading trajectory and from all subsequent daughter tra-
jectories. The amplitudes A

n,2 have poles originating
from the the 1st daughter and all subsequent daughters,
A

n,3 from the 2nd and all higher daughters, etc. Thus we
can use m to label Regge trajectories and define,

↵(m)(s) ⌘ ↵(s)� (m� 1) (6)

so that ↵(1)(s) ⌘ ↵(s) corresponds to the leading trajec-
tory, ↵(2) the 1st daughter and so on. The spectrum is
illustrated in Fig. 4. For fixed-t, the asymptotic behavior
of A

n,m

(s, t) at large-s reflects presence of resonances in
the crossed channel. Using Stirling’s formula one finds,

A
n,m

(s ! 1, t) / 1

s
�(n� ↵

t

)s↵
(m)(t) (7)

For large-s the tensor factor in Eq. 1 is proportional to s
and the full amplitude has the expected Regge limit,

A(s, t, u) / s↵(t) (8)

arising from the leading, m = 1 trajectory. The signature
factor will be discussed later.

III. REMOVAL OF POLES

As described in the preceding section, an amplitude
A

n,m

with fixed n and m contains an infinite number of
poles in a two-body channel it describes. Since produc-
tion of resonances is process dependent it is necessary to

find a generalization of the amplitude that allows for the
residues to be process dependent. One possibility is to
use a linear combination

A
n,m

(s, t) ! A(s, t) =
X

n�1,nm1

c
n,m

A
n,m

(s, t) (9)

The coe�cients c
n,m

need to be chosen in such a way
that A’s only couples to resonances that contribute to
the process in question. For example, in the case of an
isoscalar boson strongly coupled to three pions, isospin
conservation demands each pair of pions be produced in
isospin-1. Bose statistics then eliminates all spin-even
resonances in s t and u channels of this reaction.
One way to proceed is to construct linear combinations

of amplitudes A
n,m

that eliminate all, but selected par-
tial waves and then take linear combinations of partial
waves. Alternatively one can attempt data analysis with
a finite number of linear combinations of the A

n,m

’s and
let the fit to data determine coe�cients c

n,m

[? ]. We
find the former more appealing for several reasons. First
of all, when studying resonance properties one is forced
to work with partial waves. Proper description of reso-
nances, however, requires that unitarity is satisfied and
Regge trajectories are non-linear, while the Veneziano
model forces Regge trajectories to be real and linear.
Even though there are extensions of the Veneziano model
allowing for non-linear trajectories, implementation of
unitarity is much simpler at the level of partial waves.
We therefore need to be able to isolate partial waves.
Using the Veneziano amplitudes as building blocks, how-
ever, we will be able match the low-energy behavior of
partial waves with the asymptotic high-energy limit de-
termined by Regge poles. This is important as it provides
a constraint on data analysis that extends beyond what
resonances alone can fix.
Since each A

n,n

amplitude contains an infinite number
of poles, in order to cancel all, but a finite number of
poles an infinite number of coe�cients c

n,m

’s in Eq. 9
must be non vanishing. It is not di�cult to find a rela-
tion between the coe�cients, which decouples all, but a
finite number of poles. Consider, for example, keeping
only the pole at ↵(s) = 1 i.e. at s = s1. This pole is
only present in the amplitude A1,1 since amplitudes with
n > 1 have the lowest pole at s

n

> s1. There is only
one amplitude A1,m = A1,1 so a single coe�cient c1,1 de-
termines coupling to the pole at s = s1. The amplitude
A1,1, however, also has poles at higher masses located
at ↵

s

= 2, 3, · · · with residues that are polynomials in
t of the order of 1, 2, · · · , respectively. If we only want
to keep the pole at ↵(s) = 1, these higher mass poles
of A1,1 have to be canceled by similar poles present in
amplitudes with n > 1.
The pole in A1,1 at ↵

s

= 2 can only by canceled by the
same pole in the two amplitudes A2,m, m = 1, 2 since for
n > 2 no other A

n,m

has this pole. The amplitudes A2,1

and A2,2 are polynomials in t of the order of O(1) and
O(0) respectively. We can therefore uniquely determine
two coe�cients, c2,1 and c2,2 in terms of c1,1 so that the

s

Re α(s)

Re α(s) = a + b s

ρ(770)

ρ(1450)

ρ(1570)

ρ3(1690)

ρ (1900)

ρ3(1990)

ρ (2150)

ρ3 (2250)

ρ5 (2350) Regge/Resonance duality

Can be generalized to 
any number of  

external particles 

Can be extend to 
satisfy Mandelstam 

duality, but not known 
extensions to several 

trajectories



dual model
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ψ’

Regge

standard 
isobar



Dispersive analysis of ω/φ→3π

1

2

3

2

1
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1
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3

el = only elastic cut in = only inelastic cut

Solution:

AL(s) = 3

Z 1

�1
dzs

1� z2s
2

aR(t(s, zs))

A(s, t) =
J
maxX

J

(2J + 1)dJ1,0(zs)AJ(s)

A(s, t) =
J
maxX

J

(2J + 1)dJ1,0(zs)a
R
J (s) + (s ! t) + (s ! u)

aR(s) =
1

D(s)

Z

4m2

ds0

⇡

⇢(s0)N(s0)AL(s0)

s0 � s

Easily generalized to inelastic case

aR(s) =
1

Del(s)

✓Z si

4m2

ds0

⇡

⇢(s0)N(s)(s0)AL(s0)

s0 � s
+Ain(s)

◆

(e.g. P-waves only)



Dispersive analysis of ω/φ→3π
Integral equation

w(s) is the conformal map of inelastic contributions:  
Coefficients ai  play the role of improved subtraction constants

different from  
Niecknig et. al. 2012  

Anisovich et. al. 1998
7

FIG. 5: Left: Solutions of Eq. (31) with (solid curves) and without (dashed curves) three body e↵ects. Dotted lines indicates
kinematically allowed region. Right: Single di↵erential decay rate d�/ds.

GeV. Again, the advantage of using ⌦(s) in contrast to
⌦0(s), is that no assumption have to be done about un-
known high-energy behavior of �(s).

Another technical detail is that when an integral (31)
is cut-o↵ed the amplitude has an artificial singularity at
s = s

i

. To eliminate it we add and subtract

f(s
i

) log

✓
s
i

� s

s
i

� s
⇡

◆
, (36)

where f(s) is the integrand of (31) without 1/(s � s0)
peace. The subtracted part regularize the integral, while
the added part is absorbed in the conformal mapping
coe�cients.

We wish to remark that if we knew the discontinuity
relation of the amplitude not only at low energies as in
(19) but for all energies, then using analytical properties
of the amplitude we could reconstruct the solution every-
where up to a polynomial. However, there are inelastic
channel contributions that force us either introduce ex-
tra subtractions to suppress poorly known high energy
region or cuto↵ the integral and parametrize the inelas-
tic contribution by conformal mapping technique.

V. NUMERICAL RESULTS

A. !/� ! 3⇡

The integral equation (31) can be solved numerically
by iterations. The convergence of iterations is fast and
already after three repetitions the final solution is ob-
tained. Knowing the amplitude, it is easy to obtain
Dalitz plot distribution or integrated decay width using
the well known formula [1]

d2�

ds dt
=

1

(2⇡)3
1

32M3

1

3
P |F (s, t, u)|2 , (37)

where P = �/4 is the p-wave phase space. All the follow-
ing results are shown when the sum in the conformal vari-
able (29) is truncated at zero order (i.e. only one term)
and this term is fixed to reproduce experimental partial
decay widths [1]: �exp

!!3⇡

= 7.57 MeV and �exp

�!3⇡

= 0.65
MeV. Since the integral equation is linear in F , the fitted
parameter is going to be responsible just for an overall
normalization and it may not be enough to describe the
whole dynamics. However, having only one parameter is
a good starting point to study three body decay proper-
ties.

In Fig. 5 we show the solution of the integral equation
(31) together with the invariant mass distribution. The
significance of the three body e↵ects (crossed-channel
rescattering) is obtained by switching on/o↵ the F̂ term
and fixing parameter a

0

after iterations. As can be seen

aR(s) =
1

Del(s)

 Z si

4m2

ds0

⇡

⇢(s0)N(s)(s0)AL(s0)

s0 � s
+

NX

i=0

ai!
i(s)

!

all details in:   I. Danilkin et al.,  arXiv1076363



Dalitz plotsKLOE Collaboration / Physics Letters B 561 (2003) 55–60 57

Fig. 1. Distributions of Mmiss (top), Mγ γ , and cos θγ γ (bottom
left and right) for a sample of selected events. The rms widths
of the Mmiss and Mγ γ distributions are 5.5 MeV and 17 MeV,
respectively. The solid lines are Gaussian fits.

tracks with opposite sign of curvature and polar an-
gle θ > 40◦ which intersect the interaction region.
The acollinearity cut (#θ < 175◦) removes e+e−γ
events without incurring an acceptance loss for the
signal. We then compute the missing mass, Mmiss =
√

(Eφ − Eπ+ − Eπ−)2 − |p⃗φ − p⃗π+ − p⃗π− |2 where
E and p⃗ are laboratory energies and momenta. Mmiss
is required to be within 20 MeV of the π0 mass. This
requirement corresponds to an effective energy cut of
! 20 MeV on the total energy radiated because of ini-
tial state radiation (ISR). Two photons in the calorime-
ter are also required. A photon is defined as an en-
ergy deposit larger than 10 MeV with 21◦ < θ < 159◦

and an arrival time compatible with a particle trav-
eling at the speed of light, within 5σ (t). The two-
photon opening angle in the π0 rest frame must satisfy
cos θγ γ < −0.98.
Fig. 1 shows the distributions of the missing mass

Mmiss, of the γ γ invariant mass, and of cosθγ γ for
a sample of selected events. Due to the large cross
section3 for this final state with respect to other

3 Here and in the following we consider visible cross sections,
not corrected for the effect of the radiative corrections.

Fig. 2. Distribution of the number of events corrected for the
efficiency and divided by |p⃗∗+ × p⃗∗−|2. The gray scale is in
arbitrary units. The plot contains 1.98 millions events in 1874 bins
8.75 × 8.75 MeV2 each. Three broad bands corresponding to the
three ρ states are indicated. The kinematical boundary is also shown.

processes (σφ × BR(φ → π+π−π0) = 460 nb) and
to the clean signature, the background to this process
after the selection described is! 10−5. The Dalitz plot
variables x and y are evaluated using the measured
momenta of the charged pions, boosted to the center
of mass system: x = E∗

+ − E∗
− and y = E∗

φ − E∗
+ −

E∗
− − Mπ0 = Tπ0 . Eφ and p⃗φ are measured run by

run using Bhabha scattering events. ISR lowers the
mean π+π−π0 total energy by ∼ 130 keV. This value
is used in the analysis with negligible effect on the
results. The resolution on x and y is about 1 MeV over
the full kinematical range.
The Dalitz plot density distribution is shown in

Fig. 2. In the plot the number of events corrected for
the efficiency is shown divided by |p⃗∗

+ × p⃗∗
−|2. Three

bands corresponding to the three ρ states are clearly
evident. The two-dimensional distribution is plotted in
8.75×8.75MeV2 bins. There are 1874 bins within the
kinematic boundary. The bin width is larger than the x

and y resolution, but is small compared to the density
variations of the Dalitz plot as can be seen in the x and
y projections shown in Fig. 3. Smearing effects due to
the resolution are negligible.
Trigger and selection efficiencies have been evalu-

ated as functions of x and y . A full Monte Carlo sim-
ulation of the detector has been used with corrections
based on control samples of data. Corrections to the
detection efficiency for low energy photons have been

Only one parameter (overall normalization) ⇾ 
fixed from Γexp(ω/φ→3π) 
φ→3π: distribution clearly shows ρ-meson 
resonances 
ω→3π: distribution is relatively flat; 
upcoming high-statistic data from CLAS, KLOE, 
WASA, etc.

KLOE 
(2003)� ! 3⇡

! ! 3⇡

I. Danilkin et al.
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FIG. 8: The Electromagnetic form factor for ! ! ⇡

0
�

⇤ (left panel), the di↵erential decay rate ! ! ⇡

0
e

+
e

� (top right) and the
di↵erential decay rate ! ! ⇡

0
e

+
e

� (bottom right). Data for the form factor is taken from [55], while for the single-di↵erential
decay rate were calculated using Eq.(45). The dotted line is the VMD approach (50), while the solid, dash-dotted and dashed
lines correspond to a truncation in the expansion (49) at order 0, 1, 2 respectively.

to the NA60 data (dashed curve in Fig. 8). The re-
sulting parameters are b

1

= �23.7 and b
2

= 484.4 with
�2/N w 1.15. As you can see, the fit suggests the signif-
icant change of parameter b

1

(even di↵erent sign), which
we do not find very reliable. In order to disentangle
the nature of the steep rise, the experimental analysis
of � ! ⇡0l+l� is needed.

Figure 9 shows the results for the � meson decays.
Since there is no experimental measurements, we keep
only one terms in the conformal expansion (49) and
fix it from the experimental rela-photon decay width
�exp

�!⇡

0
�

= 5.41 keV [1]. It yields the following branch
ratios

Bth(� ! ⇡0e+e�) = 1.45 · 10�5

Bexp(� ! ⇡0e+e�) = (1.12 ± 0.28) · 10�5 (54)

and

Bth(� ! ⇡0µ+µ�) = 3.9 · 10�6 , (55)

where we found satisfactory agreement for � ! ⇡0e+e�

and unfortunately there is no data available for � !
⇡0µ+µ�. In Fig. 9 we also show the sensitivity to the
three-body e↵ects. We confirm the findings of [61], that
the there is a two-pion threshold enhancement when you
turn on cross-channel rescattering e↵ects in V ! 3⇡ am-
plitude.

VI. CONCLUSIONS

In this paper we have analyzed three-pion decays and
electromagnetic form factors of !/� within a dispersive
formalism that is based on the generalized isobar decom-
position and sub-energy unitarity. The important input
is the p-wave ⇡⇡ scattering amplitude that is available
from [19]. By means of the dispersion relation we sepa-
rated the contribution from the elastic and inelastic chan-
nels. The latter was modeled by a series in a suitable
conformal variable and the coe�cients of this expansion
play the role of the subtraction constants. This is an al-
ternative way for incorporating three-body e↵ects with-
out assuming any high energy asymptotic behavior of
the two-body amplitude. The unknown coe�cients can
be either fitted to the data or determined from the Lat-
tice of EFT-based studies. We note that the solution of
dispersive integrals is not unique and this has to do with
asymptotic behavior. When the p.w. expansion is trun-
cated, the high energy behavior is spoiled. To cure the
high-energy behavior one has to apply Regge theory and
smoothly connect it to the low energies. This analysis is
clearly far beyond the scope of the present paper.

We presented the single-di↵erential and Dalitz plot dis-
tributions, where we found non negligible three body ef-
fects. We also found our results very similar to ones of

I. Danilkin et al.

fV ⇡(s) =

Z si

4m2

ds0

⇡

�fV ⇡(s0)

s0 � s
+

NX

i=0

Ci!
i(s)
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FIG. 9: The Electromagnetic form factor for � ! ⇡

0
�

⇤ (left panel), the di↵erential decay rate � ! ⇡

0
e

+
e

� (top right) and the
di↵erential decay rate � ! ⇡

0
e

+
e

� (bottom right). The dotted line is the VMD approach (50), the solid line corresponds to a
truncation in the expansion (49) at 0th order and the dashed line is the same as the solid line but without three body e↵ects.

[33] where standard subtraction procedure were applied.
As a straightforward application of the three-body am-
plitude we studied electromagnetic form factors for !/�
mesons. The obtained results improve the simple VMD
finding, however, our theoretical analysis and the other
studies [17, 61] predict the EM transition form factor for
! ! ⇡�⇤ to be smaller at s = (M

!

�m
⇡

)2 than that mea-
sured one by NA60 collaboration. To shed more light on
the intrinsic dynamics of hadrons at low energies the ex-
perimental analysis of OZI-suppressed decay � ! ⇡0l+l�

is very desirable. The shape of the latter is predicted
within our framework.

As a next step we plan to perform the data analysis
of the upcoming ! ! 3⇡ JLab g12 data. Note, that the
same method can be applied to treat D and B mesons
three body decays. Another prospect is the hadronic
light-by-light contribution to the anomalous magnetic
moment of the muon [63], where !/� ! ⇡�⇤ serve as
input ingredients to pion transition form factor F

⇡

0
�

⇤
�

⇤

and �⇤�⇤ ! ⇡⇡ partial waves.
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Appendix A: Spin formalism

In this appendix we outline the derivation of the dis-
continuity relation in the spin formalism. The general
form of the isobar decomposition for V ! 3⇡ in the spin
formalism of Jacob and Wick [40] (for the similar appli-
cations see also [35, 64–66]) is

Habc

�

=
X

I,s,l,µ

N
⇣
Dj⇤

�µ

(R
s

) ds
µ0

(✓
s

)P I

abc

Fj

Ils

(s)

+ Dj⇤
�µ

(R
t

) ds
µ0

(✓
t

)P I
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where N = (2s + 1)1/2(2l + 1)1/2hs µ l 0 | j µi/4⇡ is the
normalization factor which includes the Clebsch-Gordan
coe�cient coming from the relation between helicity and
ls amplitudes [67]. Each term of the amplitude (A1) is
a product of two parts: the first part depends on angles
only, while the second part is responsible for the dynam-
ics of the decay. In (A1) the Wigner Dj⇤

�µ

(R) function,
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