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The Ising Model.

Few ingredients:
Cubic lattice (lattice spacing a)

On each site i a spin Si ∈ {1,−1}
Hamiltonian:

H{si} = −J
∑
<i,j>

si sj − H
∑
i

si

where < i , j > = sum on n.n. sites (links of the lattice)

Partition Function:

Z =
∑
{si}

e−
1
kTH =

∑
{si}

eβ
∑
<i,j> si sj+h

∑
i si

with β = J/kT and h = H/kT
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The Ising Model.

Very rich behaviour:
Z2 global symmetry: si → −si ∀i

Second order phase transition at a finite value βc = 0.2216543(2) of the
coupling

Z2 symmetry spontaneously broken in the low T phase

Order parameter: magnetization

M ≡ ∂

∂h
lnZ =<

∑
i

si >

Several experimental realizations:
I Uniaxial antiferromagnets
I Binary mixtures
I liquid-vapour transition
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Critical behaviour.

In the vicinity of the critical point we observe a non trivial (i.e. non mean field)
critical behaviour:
Defining t ≡ T−Tc

Tc
≡ βc−β

β

Magnetization

M(−t) ∼ (−t)−β , β = 0.3270(6)

Susceptibility
χ(t) ∼ t−γ , γ = 1.2390(15)

Specific heat
C (t) ∼ t−α, α = 0.107(4)

Correlation length

ξ(t) ∼ t−ν , ν = 0.6310(15)
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Renormalization group approach.

Scaling relations:

α + 2β + γ = 2

dν = 2− α (d ≤ 4)

Only two of the indices are really independent, they are related to the RG
eigenvalues of the two relevant operators of the theory: energy (which is Z2 even)
and magnetization (which is Z2 odd).

Irrelevant operators (for instance those related to the breaking of rotational
invariance on the lattice) give corrections to scaling contributions. Their RG
eigenvalues are related to the so called ”correction to scaling exponents”.
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Universality.

The cubic lattice Ising model belongs to the ”3d Ising universality class”,
whose field theory realization is the 3d φ4 (with φ ∈ R)

Besides the critical indices other ”universal ratios” of scaling amplitudes can
be constructed (and measured in experiments). A few examples:

Γχ ≡ lim
t→0+

χ(t)

χ(−t)

Γξ ≡ lim
t→0+

ξ(t)

ξ(−t)

ΓA ≡ lim
t→0+

C (t)

C (−t)
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The Ising Model.

These universal quantities can be estimated using

Perturbative expansions in the 3d φ4 theory (two options: ε expansion
starting from d = 4 and then setting ε = 1 or direct FT calculations in d = 3)

Strong coupling expansions on the lattice

Montecarlo simulations

Operator Z2 ∆

σ − 0.5182(3)
σ′ − > 4.5
ε + 1.413(1)
ε′ + 3.84(4)
ε′′ + 4.67(11)

Table : Critical dimensions of some low-lying operators of the 3D Ising model.
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The Ising Model.

The agreement between Montecarlo simulations and perturbative results
seems to suggest that there is nothing really interesting in the model and
that everything can be understood perturbatively.

This is wrong. There are a few important observables for which perturbative
results and simulations strongly disagree.

They open a window to new unexpected physics (and maybe can be also
observed in experiments).

To understand them duality (and the corresponding mapping to the 3d gauge
Ising model) and string theory is mandatory
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The ξ/ξ2m ratio.
The large distance behavior of connected two point function G (τ) ≡ 〈s0sn〉c is:

G (τ) =∼ exp(−τ/ξ)

where ξ is the exponential correlation length and is given by:

1

ξ
= − lim

|n|→∞

1

|n| log〈s0sn〉c .

An useful estimator for ξ is the so called second moment correlation length
defined as follows:

ξ2
2m =

µ2

2dµ0
,

where

µ0 = lim
L→∞

1

V

∑
m,n

〈smsn〉c

and

µ2 = lim
L→∞

1

V

∑
m,n

(m − n)2〈smsn〉c ,
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The ξ/ξ2m ratio.

The relation between ξ and ξ2m becomes clear if we write:

ξ2
2m =

∑∞
τ=−∞ τ 2 G (τ)

2
∑∞
τ=−∞ G (τ)

.

Assuming a simple exponential decay for G (τ),

〈S0 Sτ 〉c ∝ c exp(−|τ |/ξ) ,

and replacing the summation by an integration over τ we get

ξ2
2m =

1

2

∫∞
τ=0

dτ τ 2c exp(−τ/ξ)∫∞
τ=0

dτ c exp(−τ/ξ)
= ξ2,
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The ξ/ξ2m ratio.

The ratio ξ/ξ2m is universal and can be evaluated perturbatively in the φ4 theory.
One finds (at one loop)

ξ/ξ2m ∼ 1.0065

why a result greater than one? The point is that the single exponential ansatz is a
too trivial representation of the connected correlator. A more refined description
assumes a multiple exponential ansatz:

〈S0 Sτ 〉c ∝
∑
i

ci exp(−|τ |/ξi ) ,
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The ξ/ξ2m ratio.

Then we obtain

ξ2
2m =

1

2

∫∞
τ=0

dτ τ 2
∑

i ci exp(−τ/ξi )∫∞
τ=0

dτ
∑

i ci exp(−τ/ξi )
=

∑
i ciξ

3
i∑

i ciξi
,

The ξ/ξ2m ratio is a tool to evaluate the spectrum of the theory!

ξ

ξ2m
≡ ξ1

ξ2m
= 1 +

c2

2c1

ξ2

ξ1

(
1− ξ2

2

ξ2
1

)
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The ξ/ξ2m ratio.

In the perturbative approach to φ4 theory we have a cut located at twice the mass
(m = 1/ξ1) of the theory, this is the origin of the correction in the ratio:

G (τ)pert =
1

2mphL2
e−mphτ

[
1 +

1

32

uR

4π

]
+

3uR

16πL2mph

∫ ∞
2mph

dµ
e−µτ

µ
(

1− µ2

m2
ph

)2 .

where uR denotes the dimensionless renormalized coupling, mph ≡ 1/ξ is the
physical mass.
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The ξ/ξ2m ratio.

From this expression we find: in the low temperature phase

ξ

ξ2m
= 1 + 0.00573...

uR

4π
∼ 1.0065

From Montecarlo simulation1 instead we find

ξ

ξ2m
= 1.030(5)

From Strong coupling expansion2 we find

ξ

ξ2m
= 1.032(6)

1M.C., M.Hasenbusch, J.P.A30 (1997) 4963
2Arisue, Tabata N.P.B435 (1995) 555
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The ξ/ξ2m ratio.

Note: no discrepancy is observed in the high T phase!

Question: Is there some problem with universality (i.e. φ4 6=Ising) ?

No! direct lattice simulation of a discretized version of φ4 gives again
ξ
ξ2m
∼ 1.030

The only possible explanation is that at least one state (presumably more)
must exist in the spectrum besides the lowest mass and its cuts
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The ξ/ξ2m ratio.

Test: direct evaluation of the spectrum via MC simulation: we found a
new state with mass m2 = 1.85m
(i.e. below threshold), most probably a bound state of the lowest mass. We also
found1 2 :

indications of a rich spectrum of non perturbative states with higher masses

exactly the same pattern of states in Ising and φ4

To understand what’s going on we need

Duality and String Theory

1M.C., M.Hasenbusch and P.Provero, N.P.B556 (1999) 575
2M.C., M.Hasenbusch, P.Provero and K.Zarembo, P.R.D62 (2000) 17901
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Fluid interfaces

Interfaces play an important role in several physical systems ranging from soft
condensed matter to high energy physics.

3D spin models (and in particular the Ising model) offer a simple context
where interfaces appear and can be studied, e.g. by using numerical
simulations to check theoretical predictions.

Between the roughening and the critical temperature of the 3D Ising model,
interfaces are dominated by long wavelength fluctuations (i.e. they behave as
fluid interfaces).
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Fluid interfaces

The simplest way to force the presence of an interface in the Ising model is by
fixing antiperiodic boundary condition in one direction.

The interface free energy is given by F = − log
Zap

Zp
where (Zap) Zp is the partition

function of the Ising model with (anti)periodic b.c.
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The capillary wave model

An effective model widely used to describe a rough interface is the capillary wave
model (CWM) 1

S0 =
1

2

∫ L1

0

dx

∫ L2

0

dy

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

.

where φ(x , y) describes the transverse displacement of the minimal surface: a flat
torus of area L1L2 if periodic b.c in the longitudinal directions are chosen. Main
assumption: no foldings nor self-intersections nor overhangs → φ(x , y) is a
single–valued function of x and y .

1F. P. Buff, R. A. Lovett and F. H. Stillinger Jr., Phys. Rev. Lett. 15 (1965) 621
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The capillary wave model

Within this approximation, the interface partition function takes the form

Z ≡ e−F = λ e−σL1L2 Z (g)
q (u) .

where u = L2

L1
, λ is an undetermined constant and Z

(g)
q (u) is the result of the

(gaussian) functional integration over the φ (i.e. the contribution to the free
energy of the sum over all the possible ”shapes” of the interface).

For u = 1, i.e. L1 = L2 ≡ L, Z
(g)
q (u) = 1 and one finds

Z = λ e−σL
2 → F = σL2 + const

This result however is largely unsatisfactory. Montecarlo simulations show large
deviations which behave as δF = c/σL2. Fitting the data one finds c ∼ 0.25
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Duality: Z2 gauge theory

The building blocks of the Z2 gauge model are the link variables gn;µ ∈ {−1, 1},
which play the role of gauge fields. Denoting by µ the direction of the link, the
action is

Sgauge = −β
∑

n,µ<ν

gn;µν

where gn;µν are the plaquette variables, defined by

gn;µν = gn;µ gn+µ;ν gn+ν;µ gn;ν .

This action is invariant under local Z2 gauge transformations. The plaquettes in
the action, like any other product of links along a closed path, are invariant under
this gauge transformation.
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Duality and the Z2 gauge model

The 3D Ising model and Z2 gauge theory are related by an exact duality
transformation known as Kramers–Wannier duality. Main properties:

It relates the partition functions of the two models evaluated at two different
values of the coupling constants:

Zgauge(β) ∝ Zspin(β̃) β̃ = −1

2
log [tanh(β)]

where β̃ is the “dual coupling”

Low values of β are mapped into high values of β̃ and vice versa.

The broken symmetry phase of the spin model is mapped into the confining
phase of the gauge theory.

the end points of these two phases, the deconfinement transition and the
magnetization transition, are mapped into each other.
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Duality: Interfaces

Duality relates the interface to two important non local, gauge invariant,
observables in gauge theories: The Wilson loop and the correlator of two
Polyakov loops.

A Wilson loop is the (trace of the) ordered product of links variables along a
closed path, usually a rectangle of size RxT

A Polyakov loop is the (trace of the) ordered product of link variables along a
line which winds in one of the directions in which the have chosen periodic
boundary conditions for the model. It forms a closed path thanks to the
periodic boundary conditions.

They are very important in LGTs, since they allow to evaluate the
”interquark potential”.

Interfaces are obtained imposing antiperiodic boundary conditions, i.e.
”frustrating” a layer of links in the 3d Ising model. Wilson loops and
Polyakov loop correlators are the dual transformation of the observables
obtained frustrating only the links inside the (dual) of the wilson loop or the
(dual) of the region bordered by two Polyakov loops.
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Wilson Loop.
A Wilson loop of size R × T

 

V (R) = lim
T→∞

− 1

T
log< W (R,T ) >
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Polyakov loop correlator.

Expectation value of two Polyakov loops at distance R and Temperature T = 1/L

 

 

 

 R 

L 

V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Lattice determination of the interquark potential.
In pure lattice gauge theories the interquark potential is usually extracted from
two (almost) equivalent observables

Wilson loop expectation values < W (R,T ) > (”zero temperature potential”)

V (R) = lim
T→∞

− 1

T
log< W (R,T ) >

Polyakov loop correlators < P(0)P(R)† > (”finite temperature potential”)

< P(0)P(R)† > ∼
∞∑
n=0

cn e−LEn

where L is the inverse temperature, i.e. the length of the lattice in the
compactified imaginary time direction

E0 = V (R) = − lim
L→∞

1

L
log< P(0)P(R)† >
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Wilson Loops.

In the Wilson loop framework confinement is equivalent to the well known
area-perimeter-constant law:

< W (R,T ) >= e−(σRL+c(R+T )+k)

which implies V (R) = σR + c .
Confinement is usually associated to the creation (via a mechanism which still has
to be understood) of a thin flux tube joining the quark antiquark pair.
(Nielsen-Olesen, ’t Hooft, Wilson, Polyakov, Nambu ....) However if we accept
this picture we cannot neglect the quantum fluctuations of this flux tube. The
area law is thus only the classical contribution to the interquark potential and we
should expect quantum corrections to its form. The theory which describes these
quantum fluctuations is known as ”effective string theory”.
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Effective string action

The simplest choice for the effective string action is to describe the quantum
fluctuations of the flux tube as free massless bosonic degrees of freedom

S = Scl +
σ

2

∫
d2ξ [∂αX · ∂αX ] ,

where:

Scl describes the usual (”classical”) area-perimeter term.

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the
surface of minimal area representing the configuration around which we
expand

ξ0, ξ1 are the world-sheet coordinates.

This is nothing else than the old Capillary Wave Model !
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CWM for the Wilson loop

The functional integration is a trivial gaussian integral,

< W (R,T ) >=

∫
e−σRT−

σ
2

∫
d2ξX i (−∂2)X i

In the effective string language this is equivalent to sum over all the possible
string configuration compatible with the Wilson loop (i.e. with Dirichlet
boundary conditions along the Wilson loop).

The result is

< W (R,T ) > = e−σRT
[
η(τ)√

R

]− d−2
2

.

where η(τ) is the Dedekind function

η(τ) = q1/24Π∞n=1(1− qn)

with q ≡ e2πiτ and τ = iT/R.
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Evaluation of the CWM correction for the Wilson loop.

The gaussain integration gives:∫
e−

σ
2

∫
d2ξX i (−∂2)X i ∝

[
det(−∂2)

]− d−2
2 .

The determinant must be evaluated with Dirichlet boundary conditions. The
spectrum of −∂2 with Dirichlet boundary conditions is:

λmn = π2

(
m2

T 2
+

n2

R2

)
corresponding to the normalized eigenfunctions

ψmn(ξ) =
2√
RT

sin
mπτ

T
sin

nπς

R
.
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Evaluation of the CWM correction for the Wilson loop.

The determinant can be regularized with the ζ-function technique: defining

ζ−∂2 (s) ≡
∞∑

mn=1

λ−smn

the regularized determinant is defined through the analytic continuation of
ζ ′−∂2 (s) to s = 0:

det(−∂2) = exp
[
−ζ ′−∂2 (0)

]
.

The result is [
det(−∂2)

]− d−2
2 =

[
η(τ)√

R

]− d−2
2

.

where η(τ) is the Dedekind function

η(τ) = q1/24Π∞n=1(1− qn)

with q ≡ e2πiτ and τ = iT/R.
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The Interface case

In the interface case the only change is in the boundary conditions. As a
result we find

Z (g)
q (u) =

1√
u

∣∣∣η (iu) /η (i)
∣∣∣−2

,

with u = L2

L1

Setting u = 1 we find, as anticipated, Z
(g)
q = 1
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Implications for the Interquark potential: the ”Lüscher
term”

Using the definition of the interquark potential

V (R) = lim
T→∞

− 1

T
log< W (R,T ) >

one finds

V (R) = σR − (d − 2)π

24R
+ c

This quantum correction is known as ”Lüscher term” and is universal i.e. it
does not depend on the ultraviolet details of the gauge theory but only on
the geometric properties of the flux tube.
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The Lüscher term.
This correction is in remarkable agreement with numerical simulations. First high
precision test in d=4 SU(3) LGT more than ten years ago. 1

Figure : The static potential. The dashed line represents the bosonic string model and the solid
line the prediction of perturbation theory.

1S. Necco and R. Sommer, Nucl.Phys. B622 (2002) 328
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The Lüscher term.

0.6 0.8 1 1.2 1.4 1.6

1.4

1.6

1.8

2

2.2

2.4

Figure : The force in the continuum limit and for finite resolution, where the discretization errors
are estimated to be smaller than the statistical errors. The full line is the perturbative prediction.
The dashed curve corresponds to the bosonic string model normalized by r2

0F (r0) = 1.65.
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The Nambu-Goto action.

Evaluation of higher order quantum corrections requires further hypothesis on
the nature of the interface (or of the flux tube in the language of LGTs). The
simplest choice is the Nambu-Goto string in which quantum corrections are
evaluated summing over all the possible surfaces bordered by the Wilson loop
with a weight proportional to their area.

S = σ

∫
d2ξ
√

det(ηαβ + ∂αX · ∂βX )

∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Derivation of the Nambu-Goto action.
The Nambu-Goto action is given by the area of the world–sheet:

S = σ

∫ T

0

dτ

∫ R

0

dς
√

g ,

where g is the determinant of the two–dimensional metric induced on the
world–sheet by the embedding in Rd :

g = det(gαβ) = det ∂αXµ∂βXµ (α, β = τ, ς, µ = 1, . . . , d)

Choosing the ”physical gauge”

X 1 = τ X 2 = ς

g may be expressed as a function of the transverse degrees of freedom only:

g = 1 + ∂τX i∂τX i + ∂ςX
i∂ςX

i

+∂τX i∂τX i∂ςX
j∂ςX

j − (∂τX i∂ςX
i )2 (i = 3, . . . , d) .

Expanding we find:

S ∼ σRT +
σ

2

∫
d2ξ

[
∂αX · ∂αX +

1

8
(∂αX · ∂αX )2 − 1

4
(∂αX · ∂βX )2 + . . .

]
,
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Interface free energy from the Nambu-Goto action.

The N-G action can be evaluated and resummed to all orders using standard
covariant quantization techniques for the bosonic string1.

Z(d) = 2
( σ

2π

) d−2
2

VT

√
σAu

∞∑
m=0

m∑
k=0

ckcm−k

(E
u

) d−1
2

K d−1
2

(σAE) ,

where A = L1L2, VT is the product of the system sizes in the transverse
directions, Kl denotes the Bessel function of order l and E denotes the spectrum
levels:

E = Ek,m =

√
1 +

4π

σL2
1

(
m − d − 2

12

)
+

4π2

σ2L4
1

(2k −m)2
, (1)

1M. Billo’, M. Caselle, L. Ferro, JHEP 0602 (2006) 070
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Interface free energy from the Nambu-Goto action.

This result allows also to fix the scaling behaviour of the λ constant which in
three dimensions turns out to be λ ∼ √σ VT

Defining Fs ≡ −logZ/VT , we find:

Fs = σL2 − 1

2
lnσ − 1

4σL2
+ O

(
1

(σL2)2

)
. (2)

In remarkable agreement with MC simulation1!

Notice two nontrivial features of this agreement: even if the theory is not
renormalizable it predicts exactly that

I there is no 1/L correction.
I the coefficient of the 1/L2 term is 1/4

1M.C., M. Hasenbusch and M.Panero JHEP 0603 (2006) 084, JHEP 0709:117,2007.
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Interquark potential from the Nambu-Goto action.

In the framework of the Nambu-Goto action one can evaluate exactly the
energy of all the excited states of the flux tube:

En(R) =

√
σ2R2 + 2πσ

(
n − D − 2

24

)
In particular E0(R) corresponds to the interquark potential

V (R) = E0(R) =

√
σ2R2 − 2πσ

D − 2

24
,

V (R) ∼ σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

+ O(1/R5) ,
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The Nambu-Goto action.
High precision fit in the SU(2) case in 2+1 dimensions (A. Athenodorou, B.
Bringoltz, M. Teper JHEP 1105:042 (2011) )

l
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σl
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Figure 6: Energy of absolute ground state for SU(2) at β = 5.6. Compared to full Nambu-Goto
(solid curve) and just the Lüscher correction (dashed curve).

45
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Interquark potential via Polyakov Loop correlators.

In this case we have different boundary conditions in the two directions
(space R and inverse temperature L).

The novel feature of this observable is that by exchanging R and L (the so
called ”open-closed string transformation”) we can study the finite
temperature behaviour of the string tension.

V (R) = σ(T )R, σ(T ) = σ0

√
1− (d − 2)πT 2

3σ0

where T is now the temperature and σ0 the zero temperature string tension

From this expression we may deduce a ”Nambu-Goto” prediction for the
critical temperature:

Tc√
σ0

=

√
3

(d − 2)π

which turns out to be in remarkable agreement with LGT results both in
d=3 and d=4.
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Can we really trust these results?

These results look nice, but they depend on a set of ad hoc assumptions on
the behaviour of the flux tube. Why should we prefer the Nambu-Goto action
to other possible choices for the flux tube action?

They are ”too universal” and show no dependence on the gauge group.

It is somehow surprising that the Nambu-Goto model which looks so complex
can be solved exactly at the quantum level (to all orders!!). How is it
possible?

Is there a ”boundary” contribution due to the quarks at the flux tube
boundaries?

In the past few years two important results changed our understanding of effective
string theories and allowed us to answer to the above questions
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Universality of effective string corrections.

The Effective String action is strongly constrained by Lorentz invariance. The
first few orders of the action are universal and coincide with those of the
Nambu-Goto action. This explains why N.-G. describes so well the infrared
regime of Wilson loops or Polyakov Loop correlators.1 2 3

The Nambu-Goto effective theory can be described as a free 2d bosonic
theory perturbed by the irrelevant operator T T̄ (where T and T̄ are the two
chiral components of the energy momentum tensor). This perturbation turns
out to be quantum integrable and yields, using the Thermodynamic Bethe
Ansatz (TBA), a spectrum which, in a suitable limit, coincides with the
Nambu-Goto one. 4

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
4M. Caselle, D. Fioravanti, F. Gliozzi, R. Tateo JHEP07(2013)071
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Effective string action

The most general action for the effective string can be written as a low energy
expansion in the number of derivatives of the transverse fields (”physical gauge”).

S = Scl +
σ

2

∫
d2ξ

[
∂αX · ∂αX + c2(∂αX · ∂αX )2 + c3(∂αX · ∂βX )2 + . . .

]
+ Sb ,

where:

Scl describes the usual (”classical”) perimeter-area term.

Sb is the boundary contribution characterizing the open string

Xi (ξ0, ξ1) (i = 1, . . . , d − 2) parametrize the displacements orthogonal to the
surface of minimal area representing the configuration around which we
expand

ξ0, ξ1 are the world-sheet coordinates.
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Effective string and spacetime symmetries.
Symmetries of the action must hold in the
low energy regime.

String vacuum is not Poincaré invariant.

=⇒ Poincaré symmetry is
broken spontaneously.

ISO(D − 1, 1)→ SO(D − 2)⊗ ISO(1, 1). =⇒ 3(D − 2) Goldstone bosons?

Just D − 2 tranverse fluctuations of the string.
The remaining 2(D − 2) Lorentz transformations are realized non-linearly
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Non-linear realization and long-string expansion.

An internal transformation of the fields realizes the Poincaré group:

Broken translations:
X i → X i + ai . =⇒ Only field derivatives in the effective action.

Broken rotation in the plane (1, 2):

δbjε Xi = ε (−δijξb − Xj∂bXi )

Number of derivatives minus number of fields (scaling) preserved.

Fields and coordinates rescaling =⇒ Derivative expansion:

∂aX i −→ 1√
σR

∂aX i .

Variations by broken rotation mix orders =⇒ Recurrence relations.

ISO(1, 1) and SO(D − 2) invariance =⇒ Contraction of indices.
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Effective string action is strongly constrained! 1 2 3

the terms with only first derivatives coincide with the Nambu-Goto action to
all orders in the derivative expansion.

The first allowed correction to the Nambu-Goto action turns out to be the
the six derivative term

c4

(
∂α∂βX · ∂α∂βX

)
(∂γX · ∂γX )

with arbitrary coefficient c4

however this term is non-trivial only when d > 3. For d = 3 the first
non-trivial deviation of the Nambu-Goto action is an eight-derivative term

The fact that the first deviations from the Nambu-Goto string are of high
order, especially in d = 3, explains why in early Monte Carlo calculations a
good agreement with the Nambu-Goto string was observed.

1M. Luscher and P. Weisz JHEP07(2004)014
2H. B. Meyer JHEP05(2006)066
3O. Aharony and M. Field JHEP01(2011)065
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Application: the boundary term of the effective action:
Constraints imposed by the Lorentz invariance

If the boundary is a Polyakov line in the ξ0 direction placed at ξ1 = 0, on which
we assume Dirichlet boundary conditions Xi (ξ0, 0) = 0, the most general boundary
action should be of this type

Sb =

∫
dξ0

[
b1∂1X · ∂1X + b2∂1∂0X · ∂1∂0X + b3(∂1X · ∂1X )2 + . . .

]
.

Imposing Lorentz invariance one finds that b1 = 0 and that the b2 term is only
the first term of a Lorentz invariant expression1 :

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X

1 + ∂1X · ∂1X
− (∂0∂1X · ∂1X )2

(1 + ∂1X · ∂1X )2

]
.

which is the analogous in the case of the boundary action of the Nambu-Goto
action for the ”bulk” effective action.

1M. Billo, M. Caselle, F. Gliozzi, M. Meineri, R. Pellegrini JHEP05(2012)130
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The boundary contribution to the interquark potential

Following the above discussion, the leading correction coming from the boundary
turns out to be:

S
(1)
b,2 =

∫
dξ0 [b2∂1∂0X · ∂1∂0X ] .

Its contribution to the interquark potential can be evaluated performing a simple
gaussian functional integration1

〈S (1)
b,2〉 = −b2

π3L

60R4
E4(i

L

2R
) .

where the Eisenstein function E4, is defined as

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn ,

where q = e 2πiτ and σp(n) is the sum of the p-th powers of the divisors of n:

σp(n) =
∑
m|n

mp .

1O. Aharony and M. Field JHEP01(2011)065
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The boundary contribution to the interquark potential

We end up with the folllowing expression for the interquark potential

V (R) = σR − π(D − 2)

24R
− 1

2σR3

(
π(D − 2)

24

)2

− b2
π3(D − 2)

60R4
+ O(1/R5) ,

where b2 is a new physical parameter, similar to the string tension σ, which
depends on the theory that we study and should be determined by
simulations and comparison with experiments.

To test this picture we performed a set of high precision simulations in the
case of the 3d gauge Ising model, which is the simplest possible confining
gauge theory.
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Simulation I: Polyakov loops

In order to eliminate the non-universal perimeter and constant terms from the
expectation value of Polyakov loop correlators P(R, L) (where L is the length
of the two loops and R their distance) we measured the following ratio:

RP(R, L) =
P(R + 1, L)

P(R, L)
.

Due to the peculiar nature of our algorithm, based on the dual
transformation to the 3d spin Ising model, this ratio can be evaluated for
large values of R and L with very high precision.
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Simulation settings

We performed our simulations in the 3d gauge Ising model, using a dual
algorithm

data set β L σ 1/Tc

1 0.743543 68 0.0228068(15) 5
2 0.751805 100 0.0105255(11) 8
3 0.754700 125 0.0067269(17) 10

Table : Some information on the data sample
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Results

The values of b2 extracted from the data show the expected scaling
behaviour b2 ∼ 1√

σ3

data set b2 b2
√
σ

3
χ2

1 7.25(15) 0.0250(5) 1.2
2 26.8(8) 0.0289(9) 1.8
3 57.9(12) 0.0319(7) 1.3

Table : Values of b2 as a function of β
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Simulation II: Wilson loops

As a check of our analysis we performed the same simulation for the Wilson loops
fixing the value of b2 obtained above. In this case there is no more parameter to
fit and we can directly compare our predictions with the results of the simulations.
To eliminate all the non-universal parameters we constructed the following
combination:

R
′

W (L, Lu) =
W (L,R)

W (L + 1,R − 1)
− exp{−σ(1 + L(1− u))} , u = R/L
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Simulation II: Wilson loops

Figure : R
′
W (L, L 4

3
) at β = 0.754700.
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Effective string theory description of glueballs: The
Isgur-Paton model

In the Isgur-Paton model1 glueballs are considered as ”closed flux tubes”
kept together by the same string tension of the interquark potential.

The model predicts glueball masses as adimensional ratios mi√
σ

and gives

results in good agreement with lattice simulations.

1N. Isgur and J. E. Paton, Phys. Rev. D 31 (1985) 2910
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Glueballs in SU(N) LGT in d=4.

mG/
√
σ

JPC SU(∞) IP model
0++ 4.065(55) 3.12
0++∗ 6.18(13) 6.46
0++∗∗ 7.99(22) 8.72
2±+ 6.88(16) 6.79
2±+∗ 8.62(38) 9.06
0−+ 9.02(30) 13.86
4±+ – 9.64
1±+ 10.00(25) 10.84
3±+ – 8.30

Table : Glueball masses in units of the string tension. Predictions of the simple
no-parameter Isgur-Paton flux tube model compared to the actual spectrum of the
SU(N = ∞) theory.1

1R.W. Johnson, M. Teper, Phys.Rev. D66 (2002) 036006
1R.W. Johnson, M. Teper, Phys.Rev. D66 (2002) 036006
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Glueballs in Z2 LGT in d=3.

JP Ising IP Rmax
√
σ

0+ 3.08(3) 2.00 0.50
(0+)′ 5.80(4) 5.94
(0+)′′ 7.97(11) 8.35
2± 7.98(8) 6.36 0.65
(2±)′ 9.95(20) 8.76
0− 10.0(5) 13.82 1.20
(0−)′ 13.8(6) 15.05
(1/3)± 12.7(5) 8.04 0.75

Table : Glueball masses in units of the string tension. Predictions of the simple
no-parameter Isgur-Paton flux tube model compared to the actual spectrum of the Z2

gauge theory in three dimensions.In the last column we report the IP predictions for the
glueball radii.
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Glueballs in Z2 LGT in d=3.

Using Duality it can be proved that: the spectrum of the Z2 gauge theory in
the confining phase with periodic boundary conditions coincides with the
symmetric sector of the Ising spin model spectrum in the low temperature
phase with periodic boundary conditions. The proof relies on the existence of
a non-zero interface tension and therefore applies exclusively to the broken
symmetry phase of the spin model1.

A few important consequences:

I The lowest mass of the Ising model coincides with the 0+ glueball of the dual
gauge Ising model and the first glueball excitation (which is again in the 0+

channel) is mapped onto the new state observed in MC simulation.
I In general the glueball spectrum of a gauge theory is much richer than the

particle spectrum of a QFT. All these states are mapped by duality into
non-perturbative states of the 3d Ising model.

I String theory (via the IP model) allows to predict the masses and the angular
momentum of all these bound states .

1M.C., M.Hasenbusch, P.Provero and K.Zarembo, N.P.B 623 (2002) 474
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Conclusions

The Effective String action is strongly constrained by Lorentz invariance.
The first few orders of the bulk and of the boundary action are universal
This explains why the Nambu-Goto effective theory describes so well the
infrared regime of the interquark potential and of the interface free energy.

In the 3d gauge Ising model also the first universal boundary correction can
be reliably estimated and agrees with predictions

The Nambu-Goto action can be described as a free 2d bosonic theory
perturbed by the irrelevant operator T T̄ . This perturbation is quantum
integrable and yields, via TBA, a spectrum which, in a suitable limit,
coincides with the Nambu-Goto one

An effective string description exist also for the glueball masses. All these
states are mapped by duality into non-perturbative states of the 3d Ising
model.
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The Isgur-Paton model at Finite Temperature

The Isgur-Paton model can be extended also to finite temperature. The only
modification is that one must change the string tension σ with its finite
temperature counterpart σ(T )

As a consequence the model predicts that the glueball masses should vanish
at the deconfinement transition keeping the ratio m(T )/

√
σ(T ) constant.

We tested this prediction3 (again in the 3d Ising model)

Evaluating the glueball mass on the lattice at finite temperature is not trivial.
It requires looking at the connected correlator of four Polyakov loops

3M. Caselle, R. Pellegrini Phys. Rev. Lett. 111 (2013) 132001
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Extracting the glueball mass from the connected correlator
of four Polyakov loops.

 

 

 

R 

a 

 
 Effective string interpretation of the correlator. The external legs correspond to

the four Polyakov loops, while the glueballs are the excitations of the closed string
joining together the four legs.
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Results.
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The lowest glueball mass scales as σ(T )
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