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The Standard Model

Bosonic sector
SU(3)c × SU(2)L × U(1)Y
Gµν Wµν Bµν

Fermionic sector

(
uiL
diL

)
, uiR , diR(

eiL
νiL

)
, eiR , νiR(?) i = 1, 2, 3

Higgs sector

Higgs field
– complex scalar field in the 1

2
repr. of SU(2)L

Mexican-hat potential
– SU(2)L × U(1)Y → U(1)EM and Higgs mechanism
Yukawa coupling
– fermion masses
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. . . and Beyond

The Higgs mass is expected to get corrections of the order of the natural cut-off (Planck scale);
what does keep it of the order of a few hundred GeV?

↪→ The Standard Model is an effective theory valid only at energy scales below the TeV!
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. . . and Beyond

The Higgs mass is expected to get corrections of the order of the natural cut-off (Planck scale);
what does keep it of the order of a few hundred GeV?

↪→ The Standard Model is an effective theory valid only at energy scales below the TeV!

An extension of the Standard Model must

1 give mass to the fermions and break the gauge symmetry while keeping the theory
consistent

2 be compatible with electroweak precision measurement

3 solve the problems of the current formulation
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. . . and Beyond

The Higgs mass is expected to get corrections of the order of the natural cut-off (Planck scale);
what does keep it of the order of a few hundred GeV?

↪→ The Standard Model is an effective theory valid only at energy scales below the TeV!

Some possible extensions

1 Supersymmetry
A new symmetry that interchanges bosons with fermions valid for scales ≈ 1 TeV is
conjectured; the Higgs is the lowest scalar state of this theory

2 (Compact) extra dimensions
Fields are defined in 4+D dimensions, with the 4 dimensions detectable to us; field modes
in the extra dimensions give rise to a tower of particles, among which could be the Higgs

3 Strongly interacting dynamics
A new strongly-interacting sector exists whose phenomenology gives the Higgs sector at
low energies
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Some possible extensions

Strongly interacting dynamics
A new strongly-interacting sector exists whose phenomenology gives the Higgs sector at
low energies.
The Higgs particle is no longer elementary.
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Color → Technicolor

As a result of chiral symmetry breaking, in QCD there is a quark condensate

〈ūu+ d̄d〉 ≈ (200 MeV)3

that is not invariant under SU(2)L ⊗ U(1)Y
Not enough for accounting for the symmetry breaking of the Standard Model:

〈φ〉 = 246 GeV

Similarities
EWSB χSB

condesate Higgs vev ψ̄ψ chiral condensate

goldstone eaten (gauged) by W,Z π-mesons

radial excitations Higgs particle scalar meson
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Color → Technicolor

As a result of chiral symmetry breaking, in QCD there is a quark condensate

〈ūu+ d̄d〉 ≈ (200 MeV)3

that is not invariant under SU(2)L ⊗ U(1)Y
Not enough for accounting for the symmetry breaking of the Standard Model:

〈φ〉 = 246 GeV

Technicolor

Technicolor sector

SU(NTC) gauge theory(
U iL
DiL

)
, U iR , DiR i = 1, . . . , Nf

〈ŪRUL + D̄RDL〉 =
ΣTC

2
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Technicolor extension

In TC theories 4-fermion operators are effectively generated at low energy.

∆LTC =
a

Λ2
TC

〈Ψ̄Ψ〉TC ψ̄ψ +
b

Λ2
TC

〈Ψ̄Ψ〉TCΨ̄Ψ +
c

Λ2
TC

ψ̄ψψ̄ψ

A simple scaled-up version of QCD doesn’t work:

Vicinity to an IR-fixed point.

〈Ψ̄Ψ〉ETC = 〈Ψ̄Ψ〉TC exp

∫ ΛETC

ΛTC

γ(µ)
dµ

µ
' 〈Ψ̄Ψ〉TC

(
ΛETC

ΛTC

)γ∗

∆LETC =
a

Λ1−γ∗
ETCΛγ∗TC

〈Ψ̄Ψ〉TC ψ̄ψ +
b

Λ1−γ∗
ETCΛγ∗TC

〈Ψ̄Ψ〉TCΨ̄Ψ +
c

Λ2
ETC

ψ̄ψψ̄ψ
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a

Λ2
TC

〈Ψ̄Ψ〉TC ψ̄ψ +
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Λ2
TC

〈Ψ̄Ψ〉TCΨ̄Ψ +
c

Λ2
TC

ψ̄ψψ̄ψ

A simple scaled-up version of QCD doesn’t work:

Technicolor is dead!

Vicinity to an IR-fixed point.

〈Ψ̄Ψ〉ETC = 〈Ψ̄Ψ〉TC exp
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ΛTC
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Technicolor extension

TC is embedded in an ETC and the interaction is mediated by the ETC particles.

∆LETC =
a

Λ2
ETC

〈Ψ̄Ψ〉ETC ψ̄ψ +
b

Λ2
ETC

〈Ψ̄Ψ〉ETCΨ̄Ψ +
c

Λ2
ETC

ψ̄ψψ̄ψ

Vicinity to an IR-fixed point.

〈Ψ̄Ψ〉ETC = 〈Ψ̄Ψ〉TC exp

∫ ΛETC

ΛTC

γ(µ)
dµ

µ
' 〈Ψ̄Ψ〉TC

(
ΛETC

ΛTC

)γ∗

∆LETC =
a

Λ1−γ∗
ETCΛγ∗TC

〈Ψ̄Ψ〉TC ψ̄ψ +
b

Λ1−γ∗
ETCΛγ∗TC

〈Ψ̄Ψ〉TCΨ̄Ψ +
c

Λ2
ETC

ψ̄ψψ̄ψ
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Technicolor → Walking

SU(2)L × U(1)Y → U(1)EM

ΛTC is tuned to give the right mass to the W±, Z bosons

4-operator coupling Q̄Qq̄q to give mass to the SM fermions; effectively generated by some
more fundamental theory (extended technicolor, ETC) at higher energy ΛETC

in general too many technipions exists

ETC generates also masses for the extra technipions (good!) and flavor changing neutral
currents (FCNC, bad!)

we can require ΛETC to be high enough in order to suppress FCNC, but then we need an
enhancement mechanism to get reasonable masses for the SM fermions and high masses
for the extra technipions...

The problems of the technicolor models can be traced back to the logarithmic running of
the coupling in QCD ⇒ QCD-like dynamics is unviable

Ultimately, QCD-like dynamics will dominate in the infrared (confinement) and in the
ultraviolet (asymptotic freedom) ⇒ there is still the possibility that in the intermediate
region the running is different from standard QCD
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Running coupling

Confinement and χSB.
• Conformal anomaly + asymptotic freedom.
• The RG flow has an UV gaussian fixed point.
• Λ separates the asymptotically free and
non-perturbative regions.

g(µ) =


1

2b0 log
( µ

Λ

) µ→∞

+∞ µ→ 0

IR conformality.
• Conformal anomaly + asymptotic freedom.
• The RG flow has an UV gaussian and an IR fixed
point.
The theory flows from the UV to the IR fixed point.
• Λ separates the asymptotically free and
scale-invariant regions.

g(µ) =


1

2b0 log
( µ

Λ

) µ→∞

g∗ µ→ 0

Conformality.
• Conformal symmetry.
• The RG flow has an UV gaussian and an IR fixed
point.
The theory sits in the IR fixed point.

g(µ) = g∗
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From QCD to Walking

The running of the coupling in QCD is determined by the β-function

β(µ) = µ
dg

dµ
= −b0g3 − b1g5 + . . . ,

with

b0 =
1

(4π)2

(
11

3
N − 4

3
TRNf

)
b1 =

1

(4π)4

(
34

3
N2 − 20

3
NTRNf − 4

N2 − 1

dR
T 2
RNf

)
For conformal field theories the coupling is constant and the β-function is zero

At points for which β(g) = 0 the coupling is constant (infrared fixed point)

Near zeros of the β-function the coupling walks
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Walking and Conformal window

β(µ) = µ
dg

dµ
= −b0g3 − b1g5 + . . .

b0 =
1

(4π)2

(
11

3
N − 4

3
TRNf

)
b1 =

1

(4π)4

(
34

3
N2 − 20

3
NTRNf − 4

N2 − 1

dR
T 2
RNf

)

0 N lu
f Ncu

f = 11N
4TR

Nf

confinement walking(?) conformal
window

no asymptotic freedom

Banks-Zaks (perturbative) fixed point:

g2
∗ ' −

b0

b1
<< 1
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Walking and β-function

Walking needs two separate scales ΛETC and ΛTC

Figure 5: Top Left Panel: QCD-like behavior of the coupling constant as function of the mo-
mentum (Running). Top Right Panel: Walking-like behavior of the coupling constant as func-
tion of the momentum (Walking). Bottom Right Panel: Cartoon of the beta function associated
to a generic walking theory.

of the TC condensate at different scales shows that if the dynamics is such that the TC coupling
does not run to the UV fixed point but rather slowly reduces to zero one achieves a net enhance-
ment of the condensate itself with respect to the value estimated earlier. This can be achieved if
the theory has a near conformal fixed point. This kind of dynamics has been denoted of walking
type. In this case

〈Q̄Q〉ETC ∼
(
ΛETC

ΛTC

)γ(α∗)

〈Q̄Q〉TC , (2.44)

which is a much larger contribution than in QCD dynamics [32, 33, 34, 35]. Here γ is evalu-
ated at the would be fixed point value α∗. Walking can help resolving the problem of FCNCs
in technicolor models since with a large enhancement of the 〈Q̄Q〉 condensate the four-fermi
operators involving SM fermions and technifermions and the ones involving technifermions are
enhanced by a factor of ΛETC/ΛTC to the γ power while the one involving only standard model
fermions is not enhanced.

In the figure 5 the comparison between a running and walking behavior of the coupling is
qualitatively represented.

2.7 Weinberg Sum Rules and Electroweak Parameters

Any strongly coupled dynamics, even of walking type, will generate a spectrum of reso-
nances whose natural splitting in mass is of the order of the intrinsic scale of the theory which
in this case is the Fermi scale. In order to extract predictions for the composite vector spectrum
and couplings in presence of a strongly interacting sector and an asymptotically free gauge the-

18

If the anomalous dimension is large the difficulties of technicolor disappear
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Higher Representations Fermions

the one done for supersymmetric gauge theories [86]. However, the actual size of the conformal
window may be smaller than the one presented here which hence can be considered as a bound
on the size of the window. The reason being that chiral symmetry breaking could be triggered
for a value of γ lower than two, as for example suggested by the ladder approximation. In
Figure 6 we plot the phase diagram.

Figure 6: Phase diagram for nonsupersymmetric theories with fermions in the: i) fundamental
representation (black), ii) two-index antisymmetric representation (blue), iii) two-index sym-
metric representation (red), iv) adjoint representation (green) as a function of the number of
flavors and the number of colors. The shaded areas depict the corresponding conformal win-
dows. Above the upper solid curve the theories are no longer asymptotically free. Between the
upper and the lower solid curves the theories are expected to develop an infrared fixed point
according to the NSVZ inspired beta function. The dashed curve represents the change of sign
in the second coefficient of the beta function.

3.2.3 Comparison with the Ladder approximation

We now confront our bound for the conformal windows with the one obtained using the
ladder approximation in [10]. To determine the number of flavors above which the theory
becomes conformal, we employ the criterion proposed in [72, 73].

The idea behind this method is simple5. One simply compares the two couplings in the
infrared associated to i) an infrared zero in the β function, call it α∗ with ii) the critical coupling,
denoted with αc, above which a dynamical mass for the fermions generates nonperturbatively
and chiral symmetry breaking occurs. If α∗ is less than αc chiral symmetry does not occur

5The reader is urged to read the original papers for a more detailed explanation.

29

Fundamental

2−Antisymmetric

2−Symmetric

Adjoint

Dietrich and Sannino: Phys. Rev. D 75 (2007) 085018 [arXiv:hep-ph/0611341].

Fermions in higher representations have a lower contribution to the S-parameter,
the minimal being given by SU(2) with two flavours of adjoint (symmetric) fermions
(Minimal Walking Technicolor)
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Deforming the IR-conformal theory with a small mass

C(t, g,m, µ) =

∫
d3x 〈ΦR(t,x)ΦR(0)〉(g,m, µ)

Weinberg-Callan-Symanzik equation.

Close to the fixed point...

{
t
∂

∂t
+ β(g)

∂

∂g
− [1 + γ(g)]m

∂

∂m
+ 2 [dΦ − γΦ(g)]

}
C(t, g,m, µ) = 0

+ corrections

µ
dg

dµ
= β(g)

µ

m

dm

dµ
= −γ(g)

A. Rago (Plymouth U.) Lattice Technicolor Genova 20 May 2014 13 / 43



Deforming the IR-conformal theory with a small mass

C(t, g,m, µ) =

∫
d3x 〈ΦR(t,x)ΦR(0)〉(g,m, µ)
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Deforming the IR-conformal theory with a small mass

C(t, g,m, µ) =

∫
d3x 〈ΦR(t,x)ΦR(0)〉(g,m, µ)

Weinberg-Callan-Symanzik equation.

Close to the fixed point...

{
t
∂

∂t
− [1 + γ]m

∂

∂m
+ 2 [dΦ − γΦ]

}
C(t, g,m, µ) = 0

+ corrections

Solution of the Weinberg-Callan-Symanzik equation.

C(t, g,m, µ) ' b2(dΦ−γΦ)C(bt, g∗, b−(1+γ)m,µ) =

' µ2dΦ

(
m

µ

)2
dΦ−γΦ

1+γ

F
(
tm

1
1+γ , µ

)
The mass term breaks the asymptotic scale invariance. A mass gap is expected to be generated.

C(t, g,m, µ) ' A exp (−MΦt)

MΦ = aΦµ

(
m

µ

) 1
1+γ

m→ 0
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Some cartoons
Confinement and χSB

large fermion mass
(pure YM + NR fermions)

MPS 'MV ' 2mq

MV /MPS ' 1

MG 'M(YM)
G

chiral limit (χPT)

M2
PS ' −

〈Ψ̄Ψ〉
F 2
PS

mq

MV 'M(0)
V

MG 'M(0)
G
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Some cartoons
IR conformality

large fermion mass
(pure YM + NR fermions)

MPS 'MV ' 2mq

MV /MPS ' 1

MG 'M(YM)
G

σ ' σ(YM)

chiral limit (scaling region)

MX ' aXµ1−αmαq

σ1/2 ' aσµ1−αmαq

MX/MY ' aX/aY
MX/σ

1/2 ' aX/aσ
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Some cartoons
IR conformality

at all scales

MV /MPS ' 1 + ε

MPS � σ1/2

MG/σ
1/2 '

[
MG/σ

1/2
](YM)
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Miransky’s scenario for Banks-Zaks fixed point
V. A. Miransky. Dynamics in the Conformal Window in QCD like theories. hep-ph/9812350.

Banks-Zaks fixed point g2
∗ = − b0

b1
� 1.

The fermionic mass destroys the IR fixed point. Define the fermionic pole mass Mq .

Mq = aqµ

(
mq

µ

) 1
1+γ

Mq � Λ

In the limit Mq � Λ, the fermions decouple and theory is pure YM. Consider the regime
Mq � Λ.

The running coupling constant:

g(m,µ) =


g(0, µ) µ > Mq

g∗ µ = Mq
1

2bYM0 ln µ
ΛYM

µ�Mq

ΛYM is not a new scale in the theory, but is computed by requiring continuity about the
energy scale µ 'Mq .

ΛYM = Mq e
− 1

2bYM0 g2
∗ �Mq
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Miransky’s scenario for Banks-Zaks fixed point

V. A. Miransky. Dynamics in the Conformal Window in QCD like theories. hep-ph/9812350.

ΛYM = Mq e
− 1

2bYM0 g2
∗ �Mq � Λ

At energies much lower than Mq , the original theory is effectively described by a pure
Yang-Mills theory with scale ΛYM .

Glueballs are lighter than mesons.

A deconfinement transition occurs at a temperature Tc ' ΛYM .

Mesons are effectively quenched. The mesons are bound states of the quark-antiquark
pair interacting via the YM static potential, the bound energy is small with respect to the
mass of the constituents, and the correction to the potential due to quark-antiquark pair
creation are negligible.

As the mass Mq is reduced, the IR physics is always the same, provided that all the
masses are rescaled with Mq .

A. Rago (Plymouth U.) Lattice Technicolor Genova 20 May 2014 18 / 43



Some cartoons again
IR conformality

MV /MPS ' 1 + ε

MPS � σ1/2

MG/σ
1/2 '

[
MG/σ

1/2
](YM)
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And on the lattice?

am

g’

g

am

g’

g

• the theory has two UV-relevant parameters g, m

• renormalized trajectories lie in the (g, m) plane

• simulations are performed away from this plane

• am small in order to have small discretization effects

• scale invariance is broken by m AND 1/L

• large physical volume + light masses!

• deviations from QCD spectrum
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General strategy: go chiral!

In order to distinguish between confinement and IR-conformality, the study of the chiral
limit is essential.

The IR-conformality is characterised by the presence of a scaling region (all the masses go
to zero with the same power law).

In principle one could investigate the existence of a power-law behaviour, but
unfortunately the quality of the fits is poor. A stabler numerical strategy is to look for
plateaux in ratios of masses.

In the case of a perturbative-like IR fixed point, the quasi-degeneracy of PS and V mesons
is a common feature to the high-mass and chiral regimes. Instead the glueballs and the
string tension have drammatically different behaviours in the two opposite regimes.

Many of these behaviors can be masked in numerical simulations
by finite-volume effects and discretization artifacts.
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What has been simulated so far

-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8
m0

1.8

2.0

2.2

2.4

2.6

2.8

3.0
β

Catterall et al.
Hietanen et al.
Del Debbio et al.
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Chiral Limit

The quark mass from the axial Ward identity (PCAC mass) is used.

24x12 3

32x16 3

16x83

β

ca m  = −1.202(1)

 =2.25

0.1

0.2

0.3

0.4

−1.25

0.0

−1.20 −1.15 −1.10 −1.05 −1.00 −0.95

64x24 3

mPCAC

m0
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Old results: the spectrum
The quark mass from the axial Ward identity (PCAC mass) is used.

0.0 0.2 0.4 0.6 0.8 1.0
a mPCAC

0.5

1.0

1.5

2.0

2.5

3.0

a 
M

va
lu

es
 a

t m
P

C
A

C
 =

 ∞

PS meson mass
0

++
 glueball mass

2
++

 glueball mass

σ1/2
 (σ = string tension)
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Old results: ratios
All the masses must scale with the same exponent, ratios have to be constant.

0.5 1.0 1.5 2.0 2.5
a mPS

1.00

1.02

1.04

1.06

m
V

 /m
P

S
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Old results: ratios

All the masses must scale with the same exponent, ratios have to be constant.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mPS

0

1

2

3

4

5

6

7

8

9
m

P
S
 / 

σ1/
2
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Digging into data

Fermionic observables
How can I classify the finite volume effects affecting my data?

Change the volume in a controlled
way:

I Increase the temporal direction
I Increase the spatial direction

Change boundary conditions (...)
0.5 1.0 1.5 2.0 2.5

a m
PS

1.00

1.02

1.04

1.06

m
V

 /
m

P
S
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Temporal finite size effects

A. Rago (Plymouth U.) Lattice Technicolor Genova 20 May 2014 28 / 43



Spatial finite size effects

0 10 20 30 40
t

0.50

0.55

0.60

0.65

m
PS

(t)

L=8
L=12
L=16
L=24
L=32
L=48

A. Rago (Plymouth U.) Lattice Technicolor Genova 20 May 2014 29 / 43



Spatial finite size effects

0.50

0.60

0.70

0.80

0.90

M
PS

812162432∞ 48
L

periodic bcs
twisted bcs

0.60

0.62

0.64

0.66

0.68

162432∞ 48

zoom-in
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Spatial finite size effects

1.02

1.04

1.06

1.08

1.10
M

V/M
PS

periodic bcs
twisted bcs

1.00

1.50

2.00

2.50

3.00

M
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PS

812162432∞ 48
L
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Spatial finite size effects
Assume scaling and characterise my uncertainties

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

M
PS

812162432∞ 48
L

5%

0.5%
2%

10%
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In the end: not too bad

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

MPS

0.96

0.98

1.00

1.02

1.04

1.06

1.08
M

V/M
PS

24x123

32x163

64x243

80x483

64x163

-
-
~ 0.5%
2% ~ 5%
~ 5%
> 5%
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Digging into data

Gluonic observables
How can I classify the finite volume effects affecting my data?

Control center symmetry.

Coherence of spatial and string tension.

Change the volume in a controlled
way:

I Increase the spatial direction.
0.0 0.5 1.0 1.5 2.0 2.5 3.0

m
PS

0

1

2

3

4

5

6

7

8

9

m
P

S
 /
 σ

1
/2

A. Rago (Plymouth U.) Lattice Technicolor Genova 20 May 2014 34 / 43



Polyakov distribution
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Finite size effects:
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Finite size effects:M0++
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Summary
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Summary
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it looks all fine, isn’it?

We are confident everything is going in the correct direction but just to be sure let’s give a look
to the topological charge...

...and just to be on the safe side use Open BC
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Scaling region
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A smart idea!

Study the scaling of the integral of the spectral density of the Dirac operator.

The mode number ν̄(Ω) = 2
∫√Ω2−m2

0 ρ(ω)dω

It can be shown ν̄(Ω) ' ν̄0 +A[Ω2 −m2]
2
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Conclusions

Control the Volume finite size effects.
In every channel interesting for you theory.

Use smart measurement.
An interesting method to evaluate the anomalous dimensions.
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