Data analysis: heavy flavour

D. Caffarri, A. Dainese, A. Festanti, C. Jena, M. Venaruzzo, R. Turrisi

Charm in Pb-Pb:

nuclear modif. factor and elliptic flow

- New preliminary results for HP13 (talk D.Caffarri) and QM14 (talk A. Festanti)
 - $D^0 R_{AA}$ vs centrality in several p_T bins (in particular bin 8-16 GeV allows comparison with beauty measurements by CMS)
 - D⁰ R_{AA} vs p_T in semi-peripheral collisions (30-50% centrality class)
- Final results (arXiv:1405.2001, \rightarrow Phys. Rev. C)
 - $D^0 v_2$ in three centrality classes
 - D^0 R_{AA} in-plane and out-of-plane in 30-50% class
 - Extensive model comparison

D R_{AA} vs centrality: mass dependence of parton energy loss

- ALICE prompt D mesons & CMS non-prompt J/ψ:
 - B and D mesons <p_>~10 GeV/c
- Clear indication of a dependence on quark mass : RAA^B > RAA^D
- Djordjevic: non-prompt J/ψ R_{AA}
 considering for energy loss
 b quark mass
- c quarkmass
- ✓ Djordjevic: D meson R_{AA}
- Calculation by M. Djordjevic (including mass-dependent rad+coll energy loss) predict a difference

$\mathsf{D} \; \mathsf{R}_{\mathsf{A}\mathsf{A}} \; \mathsf{vs} \; \mathsf{p}_{\mathsf{T}}$

Less suppression in 30-50% than in 0-7.5%

More suppression out-of-plane than inplane \rightarrow reflects elliptic flow and path length dependence of energy loss

D elliptic flow v_2

 Indication for elliptic flow increasing from central to (semi)peripheral collisions

- Data are best described by models that include mechanisms that transfer the collective espansion to c quarks (e.g. collisional energy loss).
- Some of these models also include a component of hadronization of c quarks via quark recombination.

Charm in Pb-Pb: Outlook

- Short paper in preparation on D R_{AA} vs centrality, with focus on comparison with pions (ALICE) and with Jpsi from B (CMS) – timescale ~end of summer
- Long paper with all D meson results on spectra and R_{AA}(p_T) – timescale ~end of the year
- Look into very low p_T (with event-mixing) and high p_T (with EMCAL triggers, already started for pp 8 TeV)
- Run-2 (Nov 2015): expect about 5x higher statistics (plus full SPD)

D meson production in min. bias p-Pb

- Paper on D meson production in min. bias p-Pb collision on the arXiv: 1405.3452 [submitted to Phys. Rev. Lett.]
- Measurement of the production cross section and R_{pPb}

$$R_{\rm pPb} = \frac{(\mathrm{d}\sigma/\mathrm{d}p_{\rm T})_{\rm pPb}}{\mathrm{A}(\mathrm{d}\sigma/\mathrm{d}p_{\rm T})_{\rm pp}}$$

• D^0 , D^+ , D^{*+} and $D^+_s R_{pPb}$ compatible with unity within uncertainties

 Average D meson R_{pPb} described by theoretical calculations including cold nuclear matter effects.

• D meson suppression observed in most central Pb-Pb for $p_T > 2 \text{ GeV}/c$ collision due to final state effects.

D⁰ vs. charged particles multiplicity

- D⁰ yields extracted in different bins of $N_{\text{tracklets}}$ [$|\eta| < 1$]
- Efficiency estimated in each [p_T , $N_{tracklets}$] bin
- Density of charged particle multiplicity determined exploiting the proportionality between N_{tracklets} and N_{ch} in Monte Carlo

- Self-normalized yields increasing with charged particle multiplicity
- Same increasing trend in all *p*[⊤] intervals

 π =

- Same behavior observed in pp collisions but:
 - high mult. events in $pp \rightarrow MPI$
 - high mult. events in p-Pb \rightarrow MPI + $\langle N_{coll} \rangle = 6.9$

 ϵ^{mult}

 $\times N^{\rm tot}$

mult

 $\frac{\text{event }}{\epsilon^{\text{trigger}}}$

 V^{mult}

 $(\epsilon^{\rm tot})$

Vtot /

D⁰ Q_{pPb}

- D⁰ nuclear modification factor measured in different event activity classes: 0-20%, 20-40%, 40-60% and 60-100%
- Classes obtained slicing the VZERO signal amplitude on the Pb-going side [V0A]
- $< N_{coll}^{Glauber} >$ extracted from a Glauber fit to the VOA amplitude

- Bias observed for charged particles seems to be present also for D meson
- Bias induced by the correlation between hard scattering yields and event-activity in the VZERO acceptance

$\mathsf{D}^0 \ \mathcal{Q}_{\mathsf{pPb}}$

- Classes obtained slicing the energy deposited in the neutron calorimeter on the Pbgoing side [ZNA]
- Collision geometry information extracted with an hybrid method
- <*N*_{coll}^{mult}> obtained by rescaling the min. bias value with the ratio of multiplicity at mid-rapidity in a given class to the min. bias one

- Bias reduced
- We do not observe an event-activity/centrality dependent modification of the p-Pb p_T spectra w.r.t. pp collisions

Outlook

- Prepare a paper with the D meson multiplicity differential measurements in p-Pb
 - cut optimization in order to have better statistical significance and extract the signal in 1<pt<2 and 12<pt<24 GeV/c in the highest Ntracklets class [100, 200]
- Data driven B feed-down estimate in p-Pb: technique based on a fit to the impact parameter distribution (developed by Andrea Rossi)
- PhD thesis

D^0 signal at low- $p_{\rm T}$ in pp and p-Pb collisions

- In ALICE, inclusive p_T-differential production cross section of D⁰ meson has been measured in the p_T range 1 to 16 GeV/c in pp collisions and 1 to 24 GeV/c in p-Pb collisions.
- Standard procedure for the reconstruction of D⁰ mesons is based on the selection of displaced secondary vertices.
- At low p_T, the topological selection on the decay vertex is less effective for the background rejection and gives low efficiency for the signal.
- > This analysis aims at extending the measurement of D^0 production cross section down to $p_T = 0$ using the combinatorial background subtraction techniques.

Event mixing method:

- Mix tracks from different events to break track to track correlation and increase the statistics.
- Mix events with similar characteristics.
- Normalize outside the D⁰ mass peak region.

Like sign method:

- Combine two positive or two negative tracks (like-sign pairs) instead of a negative and positive track in the same event.
- > Normalization: $2\sqrt{(N^{++})} \times (N^{-})$

Signal in pp collisions at $\sqrt{s} = 7$ TeV

- Invariant mass spectra after event mixing and like sign background subtraction fitted with a Gaussian term for signal and a pol3 term for residual background.
- > D⁰ signal extracted at low p_T using event mixing and like sign techniques with reasonably good significance.
- > D⁰ signal extracted using event mixing and like sign techniques compares well for all measured p_{T} bins.

Signal in p-Pb collisions at $\sqrt{s} = 5.02$ TeV

D⁰ cross section from event mixing and like sign techniques compares well with the standard analysis.

p_ (GeV/c)

12

10

2

4

6

8

Summary

- ➢ For the first time in ALICE, D⁰ signal has been extracted for 0 < p_T < 1 GeV/*c* using event mixing and like sign techniques in both pp and p-Pb collisions.
- D⁰ cross section have been calculated in p-Pb using event mixing and like sign techniques.
- Comparison of D⁰ cross section with the standard analysis looks reasonably good in p-Pb collisions.
- Study on the systematic uncertainties are ongoing.

Outlook:

In pp collisions:

- > Finalize D⁰ signal extraction at low p_T using both event mixing and like sign techniques.
- Study the systematic uncertainties.
- Calculate cross section.
- Do the feed-down correction.

In p-Pb collisions:

- > Try to split p_{T} : 0-1 GeV/*c* bin into two bins.
- Finalize systematic uncertainties study.
- Do the feed-down correction.
- In Pb-Pb collisions:
- > Efforts are ongoing to extract the D⁰ signal at low p_T using both event mixing and like sign techniques.

B-JET TAGGING BY SECONDARY VERTEX RECONSTRUCTION: THE "START-UP" Motivation

- Jets: unique link between lagrangian (partons) and data (detected particles)
- Jets: unique link between lagrangian (partons) and data (detected particles)
- Key tool to study QCD properties
 - e.g. underlying event, fragmentation
- Specific to HI and HF jets:
 - study of energy loss → in-medium modification of fragmentation functions
 - hf production mechanisms, quark vs. gluon jets
 - $\text{low-}p_{T}$ (of the parton) accessible via γ -jet correlations

B-JET TAGGING BY SECONDARY VERTEX RECONSTRUCTION: THE "START-UP"

Our implementation of the method

- Analysis strategy (in brief, marked * main differences with CMS):
 - select seeder according to d_0 (ordered list)* (CMS uses S_{d3D})
 - cluster other tracks with the seeder according to:
 - D_{3D} (distance in 3D)
 - $S(D_{3D})$ significance of the above
 - $\theta_{\rm rel}$ relative angle
 - tracks excluded from further analysis if selected * (CMS does vtx merging and ''single track vertex'' treatment)
 - fit the vertex
 - save it for future tagging (no merge) *
 - call this a vertex if:
 - \geq 3-prong, flight distance in xy \leq 2.5 cm, significance of this last >3, M_{INV}<6.5 GeV
 - call this a b-vertex if:
 - S of 3D flight distance >5, η <2, p_T >8, M_{INV} >1.4 GeV

these numbers still to be tuned...

B-JET TAGGING BY SECONDARY VERTEX RECONSTRUCTION: THE "START-UP"

Snapshots from work in progress

B-JET TAGGING BY SECONDARY VERTEX RECONSTRUCTION: THE "START-UP" Outlook

- This analysis is hard to be performed on the current data samples, because of stats
- A study of the achievable performance is mandatory for our future physics plan
- next goals:
 - determination of the efficiency
 - fine tuning of the method to ALICE specs (yet a bit on the "try and fail" side)
- Limits on the measurement of tagged jets can (will) be put on RUN I data and, who knows...