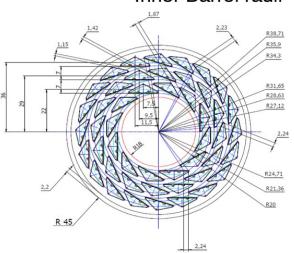


Attività ITS Work Package 1 "Physics Performance"

ITS WP1 activities overview


- Not started 1) Complete studies that were not mature enough for the TDR
 - **Done** 2) Input to decision on beam pipe radius
 - **Done** 3) Requirements for proton-proton running
 - Ongoing 4) Performance with final detector specs and more realistic experimental conditions
 - New MC simulation (also with MFT): wait for software readiness
 - Ongoing 5) Assess physics performance of ITS+TRD+TOF
 - First studies (Λ_c) started
- Discussions 6) Trigger: do we need a ITS-based trigger for UPC?
 - Discussion with UPC group started
- Discussions 7) Further explore the potential of extended acceptance
 - For correlations, also considering ITS+MFT
 - Ongoing 8) Fast simulation tools to study reconstruction of rare signals

Advancing well

Beam pipe and ITS inner barrel

Inner Barrel for 1.76cm beam pipe

TDR:

1.94 cm avg.)
 bpipe (Baseline)

L0:2.317cm

L1:3.119cm

L2:3.898cm

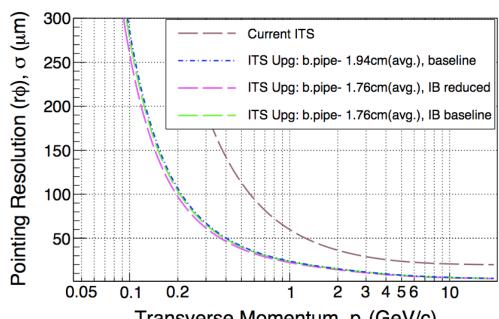
Reduced:

 1.76cm (avg.) bpipe

L0:2.136cm

L1:2.863cm

L2:3.59cm


Intermediate:

1.86 cm avg.) bpipe (Baseline)

L0:2.317cm

L1:3.119cm

L2:3.898cm

Transverse Momentum, p_T(GeV/c) **Corrado, Gudda**

Beam pipe and IB radii: outcome

Potential gain Potential loss

- Effects of a smaller beam pipe radius:
 - 1. Tracking resolution improves at low $p_T \rightarrow significant gain? NO$
 - 2. The ITS IB could be placed closer (see below)
 - 3. OR: The ITS IB could be kept as is \rightarrow easier installation **YES**
 - 4. The MFT could be placed closer \rightarrow increased η acceptance? **NO**
 - 5. γ conversions closer to the primary vertex \rightarrow bad for dielectrons? **NO**
- Effects of smaller ITS IB radii:
 - 1. Tracking resolution further improves at low $p_T \rightarrow significant gain? NO$
 - 2. Increase of innermost layers occupancy → higher fake track rate? **YES**

(NO = not substantially; YES = substantially)

→ OK for reducing pipe by 1 mm and leaving IB as is

Approved by MB

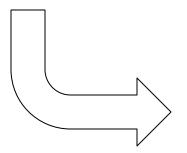
Update on pp L_{int} requirements

Measurement	At 5.5 TeV	At 14 TeV	
D^0	6/pb*	Not possible	
Λ_{c}	0.6/pb*	Not possible	
J/psi from B	3/pb	Not assessed	Fiorella
Λ_{b}	$(60 \pm 30) / pb$	$(22 \pm 12) / pb$	Cristina
B+	$(80 \pm 60) / pb$	$(40 \pm 30) / pb$	Johannes
Jets	300/pb	80/pb	Mateusz

- *: from LOI, to be revised based on TDR performance
- Should be ok also MFT Physics, to be verified
- Beauty measurements are OK at 14 TeV (scaling error much smaller than for charm)

 Jets: 300/pb not possible... will have to do with 14 TeV, but need a sample at 5.5 TeV (to be quantified) for validation of 14 TeV scaled ref.

Standard MC Production & Analysis


Concept – What are the limitations on generated statistics?

→ Computing time & storage space!

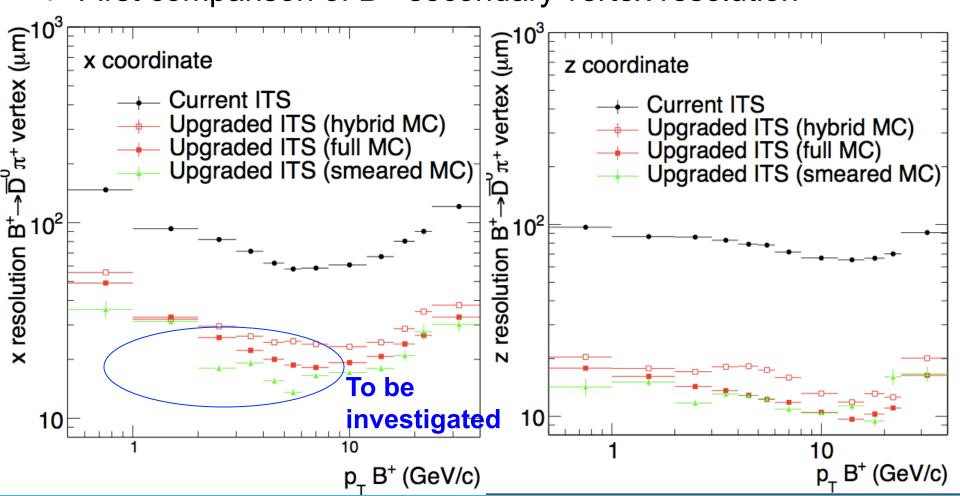
Most of the

computing time is

Parameterized Fast Track Simulation

& Analysis

Concept – Ideally, we end up with "on-the-fly" ESD and AOD generation, comparable to ITSImprover



First checks on full chain for $B \rightarrow D^0 \pi$ reconstruction

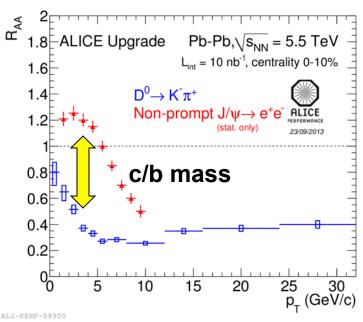
- Full chain kine→ESD→AOD→AODvertexingHF in place
- First comparison of B+ secondary vertex resolution

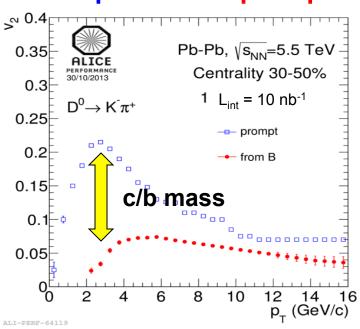
EXTRA SLIDES

Breve riassunto attività recente: physics performance per il TDR

Summary of physics reach

New Full wrt MC		Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$			
CDR	Observable	$p_{ m T}^{ m min} \ ({ m GeV}/c)$	statistical uncertainty	$p_{ m T}^{ m min} \ ({ m GeV}/c)$	statistical uncertainty		
	Heavy Flavour						
—	D meson $R_{\rm AA}$	1	10 %	0	0.3 %		
	D_s meson R_{AA}	4	15%	< 2	3%		
	D meson from B $R_{\rm AA}$	3	30%	2	1%		
	J/ψ from B R_{AA}	1.5	15% (p _T -int.)	1	5%		
\rightarrow	$\mathrm{B^{+}}$ yield	not a	accessible	3	10%		
	$\Lambda_{ m c}~R_{ m AA}$	not a	accessible	2	15%		
	$\Lambda_{\rm c}/{ m D}^0$ ratio	not a	accessible	2	15%		
\rightarrow	$\Lambda_{ m b}$ yield	not a	accessible	7	20%		
	D meson $v_2 \ (v_2 = 0.2)$	1	10%	0	0.2%		
	D_s meson v_2 ($v_2 = 0.2$)	not a	accessible	< 2	8%		
	D from B v_2 ($v_2 = 0.05$)	not a	accessible	2	8%		
	J/ψ from B $v_2~(v_2=0.05)$	not a	accessible	1	60%		
\rightarrow	$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not a	accessible	3	20 %		
	Dielectrons						
	Temperature (intermediate mass)	not a	accessible		10 %		
	Elliptic flow $(v_2 = 0.1)$ [14]	not a	accessible		10%		
	Low-mass spectral function [14]	not a	accessible	0.3	20%		
	Hypernuclei						
\longrightarrow	$^3_\Lambda { m H~yield}$	2	18 %	2	1.7 %		

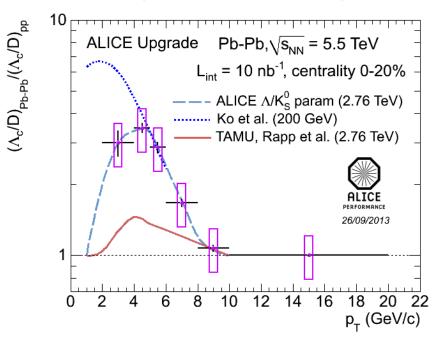

Heavy Flavour R_{AA} and flow


- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP
 - Sensitive to medium viscosity and equation of state

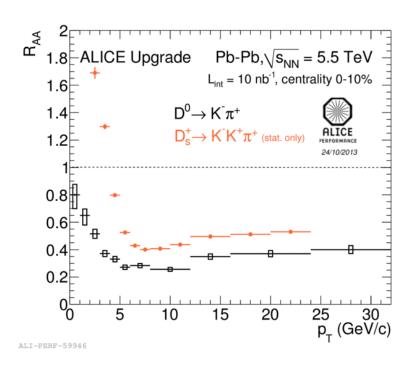
 R_{AA} and v_2 of D and B in a wide p_T range

Prompt D⁰ and Non-prompt J/ψ R_{ΔΔ}

Prompt and non-prompt D⁰ v₂

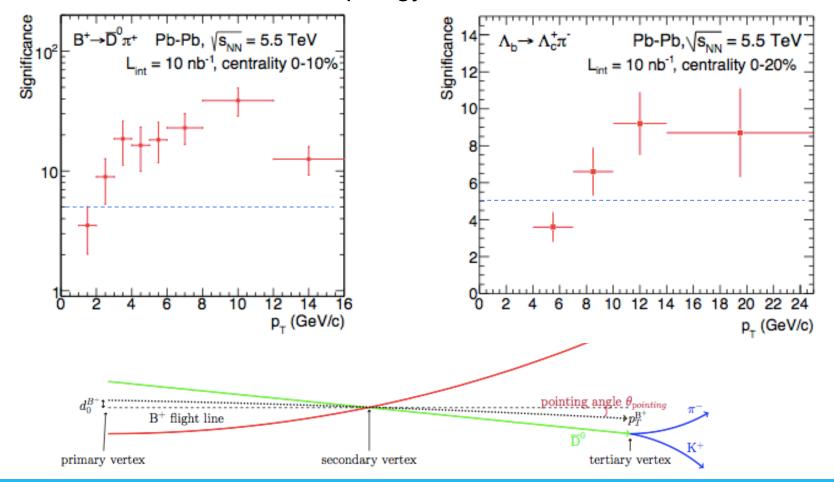

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

Heavy Flavour "hadrochemistry"



- Investigate thermalization and hadronization mechanism (recombination?)
- $\Lambda_c \rightarrow pK\pi$ and $D_s \rightarrow KK\pi$ ($c\tau$ =60 and 150 μ m)

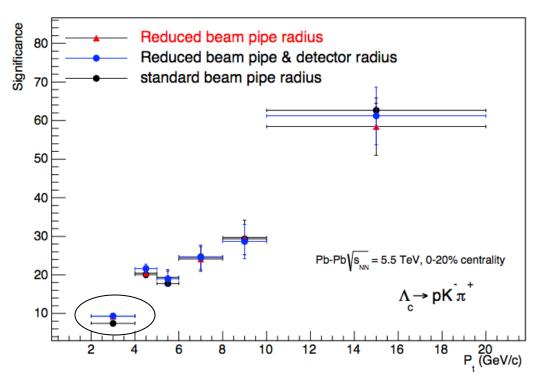
Λ_c /D enhancement (full detector sim.)


D⁰ and D_s R_{AA}

Exclusive beauty reconstruction

- Tracking precision and large L_{int} gives access to fully reco beauty decays
- Two benchmark channels considered: B⁻→D⁰(→Kπ)π⁻ and Λ_b→Λ_c(→pKπ)π⁺, both with BR~10⁻⁴ and similar topology

Study on effect of ITS PID


- Q: need PID in the new ITS for the Upgrade programme?
- We have studied the benefit of ITS PID for the two items that are potentially more sensitive
 - $\Phi \Lambda_c \rightarrow pK\pi$: where PID is important because $c\tau$ is only 59 μm
 - ♣ Low-mass dielectrons: eID for low-p_T conversion rejection
- In both cases, the effect of PID in the ITS is marginal:
 - $\bullet \Lambda_c \rightarrow pK\pi$: only few % effect on significance in 2-3 GeV/c
 - ➤ Because it is more effective to decay tracks with p_T>800 MeV/c
 - Low-mass ee: statistical error on high-mass inverse slope T is 8% w/ PID and 11% w/o PID

→ Decision to build ITS without PID capability

Λ_c and pipe / IB radii

 Studied using Hybrid method on MC with new ITS (LHC13d19)

- Significance improves by 20% in bin 2-4 GeV/c (from 8 to 9.5)
 - Not a substantial change

Radii and occupancy

Ruben

- Occupancy in innermost layers has two components
 - \bullet Hadronic: scales with $1/r^2 \rightarrow +20\%$ from 23 to 21 mm
 - Delectrons: scales faster than 1/r² (very soft p_T spectrum)
 → +50-70% from 23 to 21 mm
- Layer-0 occupancies in central collisions estimated for Pb-Pb 50 kHz (30 μs read-out cycle for pixels)

	1 central + 0 m.b.	1 central + 1 m.b.	1 central + 2 m.b.	1 central + 3 m.b.
21 mm	48 hits/cm ²	58 hits/cm ²	68 hits/cm ²	78 hits/cm ²
23 mm	64 hits/cm ²	75 hits/cm ²	87 hits/cm ²	98 hits/cm ²
21 / 23	+33%	+30%	+28%	+26%