Prospects for heavy ions at HL-LHC and FCC

INFN

Andrea Dainese (INFN Padova, Italy)

NF Frascati, 25.07.14

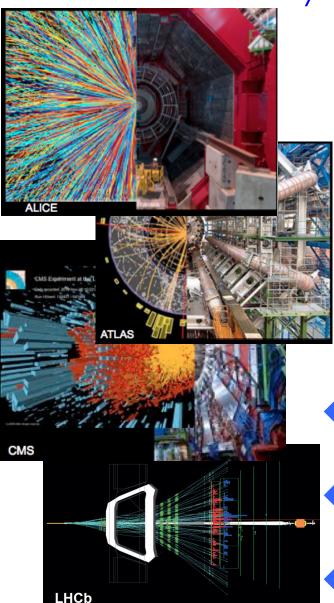
Andrea Dainese | Heavy Ions at HL-LHC and FCC

Outline

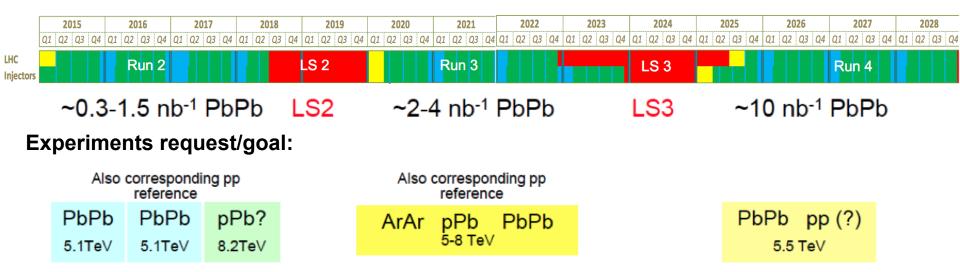
Timeline of future HI running at LHC

- HI physics programme at HL-LHC
- Detector upgrades
- Examples of projected performance

- The FCC design study
- Ions at the FCC
- High-density QCD in the initial state: saturation
- High-density QCD in the final state: QGP



Heavy lons at the LHC: Run I


-rascatı, <u>25.0/.</u>

year	system	$\sqrt{s_{NN}}$ (TeV)	L _{int}
2010	Pb-Pb	2.76	~ 10 μb⁻¹
2011	рр	2.76	~ 250 nb⁻¹
2011	Pb-Pb	2.76	~ 150 μb⁻¹
2013	p-Pb	5.02	~ 30 nb⁻¹
2013	рр	2.76	~ 5 pb ⁻¹

- 2011 Pb-Pb run: 5x10²⁶! already above nominal luminosity
- First, very successful, p-Pb run (with all four large exp!)

Two short pp reference runs at Pb-Pb \sqrt{s}

Timeline of future HI running at the LHC \mathcal{C}

- ◆ Run 2 (LS1→LS2): Pb-Pb ~1/nb or more, at $\sqrt{s_{NN}}$ ~ 5.1 TeV
- LS2: major ALICE and LHCb upgrades, important upgrades for ATLAS and CMS, LHC collimator upgrades
- Runs 3+4 ("HL-LHC" phase for ions):
 - Experiments request: >10/nb Pb-Pb (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - > p-Pb high lumi, pp reference 5.5 TeV, possibly light ions (e.g. Ar-Ar)
- → focus on rare probes, study their coupling with QGP medium and their (medium-modified) hadronization process

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)
- Heavy flavour: characterization of mass dependence of energy loss, HQ inmedium thermalization and hadronization, as a probe of the medium transport properties
 - > Low- p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - B and b-jets (focus of ATLAS and CMS)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)
- Heavy flavour: characterization of mass dependence of energy loss, HQ inmedium thermalization and hadronization, as a probe of the medium transport properties
 - > Low- p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - B and b-jets (focus of ATLAS and CMS)
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia and elliptic flow (focus of ALICE)
 - Multi-differential studies of Υ states (focus of ATLAS and CMS)

- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)
- Heavy flavour: characterization of mass dependence of energy loss, HQ inmedium thermalization and hadronization, as a probe of the medium transport properties
 - > Low- p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - B and b-jets (focus of ATLAS and CMS)
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia and elliptic flow (focus of ALICE)
 - Multi-differential studies of Y states (focus of ATLAS and CMS)
- Low-mass di-leptons: thermal radiation γ (\rightarrow e⁺e⁻) to map temperature during system evolution; modification of ρ meson spectral function as a probe of the chiral symmetry restoration
 - > (Very) low- p_T and low-mass di-electrons and di-muons (ALICE)

Focus on ALICE

Main observables:

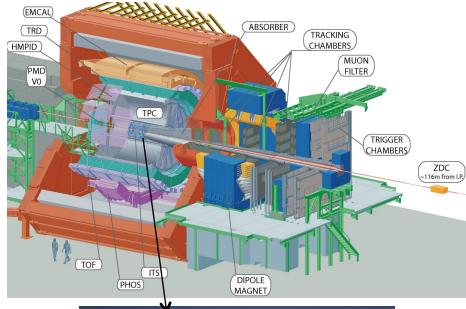
- Low-p_T heavy flavour
- Low-p_T charmonia
- (Very) low-p_T and low-mass di-leptons

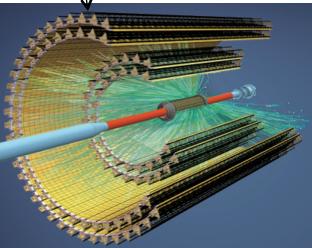
Exploit detector specificities (strengthened with the upgrades):

- hadron and lepton ID
- light-weight and precise tracker
- Iow magnetic field

Mostly "untriggerable" because of extremely low S/B

Trigger approach: write all events with continuous central barrel readout at up to 50 kHz in Pb-Pb (currently 0.5 kHz)


~1 TB/s HLT/DAQ ~10 GB/s


→ HL-LHC: increase of minimum-bias sample x100 wrt Run 2

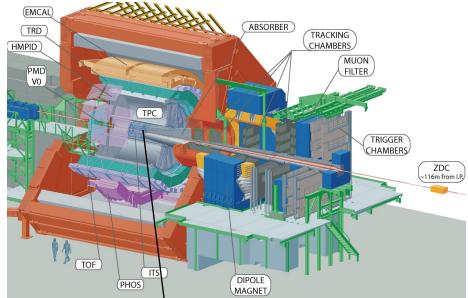
ALICE Upgrade: strategy

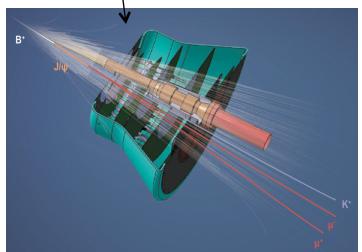
→ New Inner Tracking System (ITS)

Improved resolution, Smaller material budget, Faster readout

Andrea Dainese | Heavy lons at HL-LHC and FCC

INFN


ALICE Upgrade: strategy

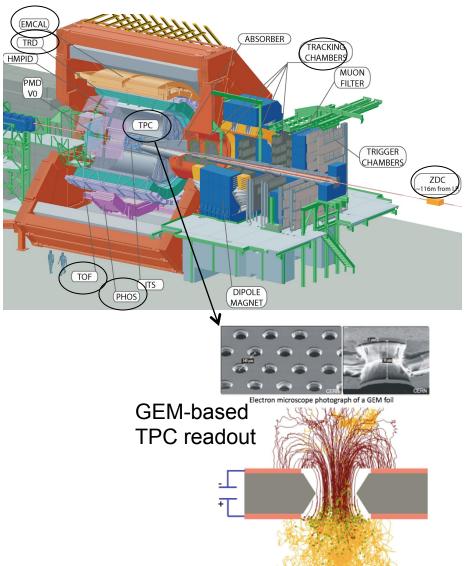

→ New Inner Tracking System (ITS)

Improved resolution, Smaller material budget, Faster readout

→ New Forward Muon Tracker (MFT)

Heavy flavour vertices also at forward rapidity

N F N


ALICE Upgrade: strategy

→ New Inner Tracking System (ITS)

Improved resolution, Smaller material budget, Faster readout

→ New Forward Muon Tracker (MFT)

- Heavy flavour vertices also at forward rapidity
- → Upgraded read-out for TPC (GEM), TOF, TRD, PHOS, EMCAL, MUON, ZDC, Upgraded DAQ/HLT/Offline, new Fast Interaction Trigger detector
 - Target LHC Pb-Pb luminosity after LS2 (~6x10²⁷ cm⁻²s⁻¹= 10 x current)
 - Upgraded ALICE records Pb-Pb data at 50 kHz (currently <0.5 kHz)</p>
 - Integrate L_{int}=10 nb⁻¹ after LS2 (~10¹¹ minimum-bias Pb-Pb events)

Focus on ATLAS and CMS

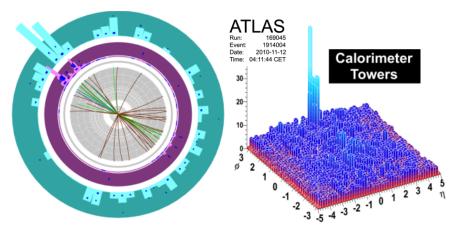
- Differential studies of jets at very high p_T
- b-jets
- Multi-differential studies of Y states
- Exploit detector specificities (strengthened with the upgrades):
 - muon ID
 - precise tracker
 - calorimetry
- Mostly based on muon, jet, displaced track triggers
- Trigger/DAQ approach: strong data reduction
 50 kHz L1 ~ few kHz HLT ~ 100 Hz
- → HL-LHC: increase of sample x10 wrt Run 2

ATLAS, CMS, LHCb: upgrades most relevant to HI

ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

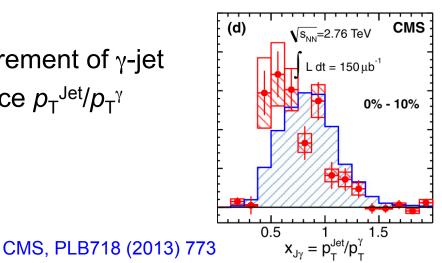
CMS

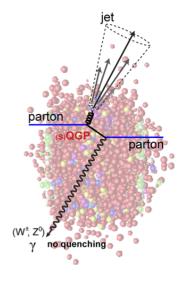

- New pixel tracker (LS2), then new tracker (LS3): tracking and b-tag
- Extension of forward muon system (LS2): muon acceptance
- Upgrade of trigger and DAQ (LS2): HI-specific development to reach necessary L1 rejection at 95%, from 50 kHz to <3 kHz (HLT)</p>

LHCb (LS2)

 Upgrade includes new vertexing and tracking detectors (not focused on HI)

Jet quenching

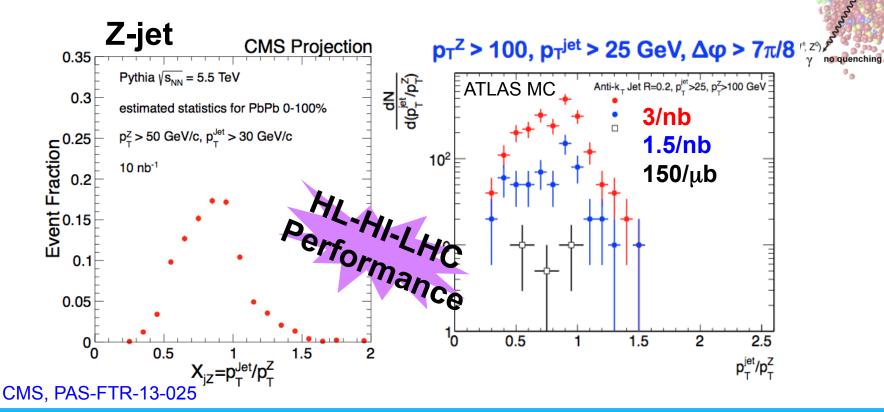

Pb-Pb events with large di-jet imbalance



Direct observation of in-medium parton energy loss

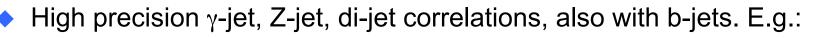
ATLAS, PRL105 (2010) 252303 CMS, PLB712(2012) 176

- A powerful tool: γ/Z-jet correlations
 - $\succ E^{\gamma/Z} = E^{\text{jet}}!$
 - First measurement of γ-jet p_{T} imbalance $p_{T}^{\text{Jet}}/p_{T}^{\gamma}$

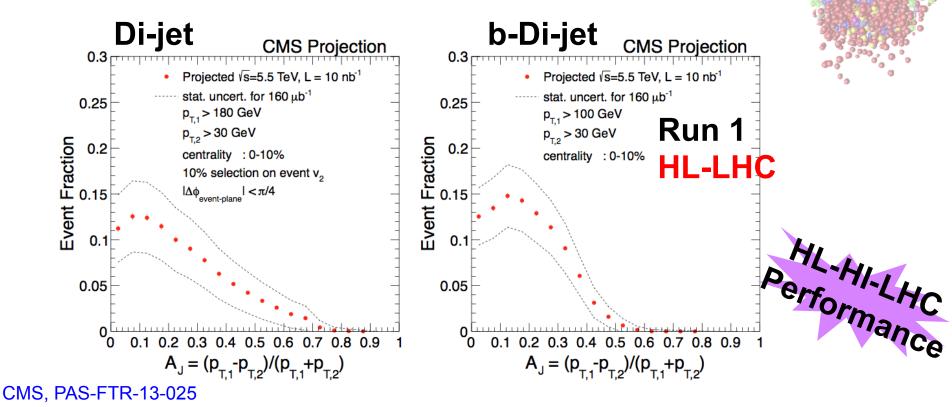

parton

part

Jets: performance

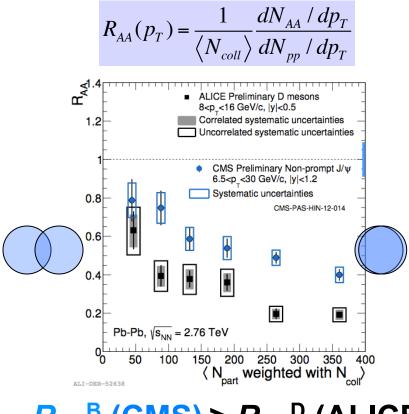

High precision γ-jet, Z-jet, di-jet correlations, also with b-jets. E.g.:

- 10M di-jets with p_{T,1}>120 GeV/c (CMS, 10/nb)
- 140k b-jets with p_T > 120 GeV/c (CMS, 10/nb)
- Understand medium response and energy radiation details, map path-Length dependence (e.g. radiative ~L², collisional ~L)

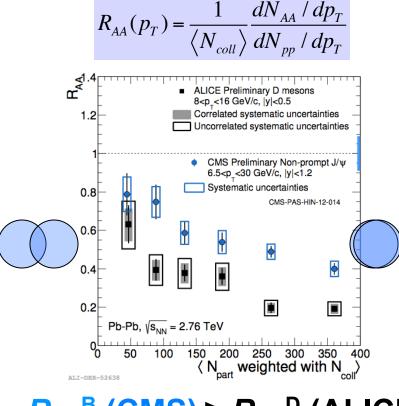


parto

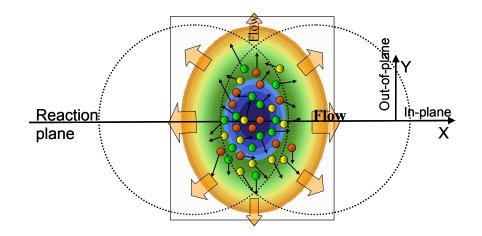
Jets: performance


- > 10M di-jets with $p_{T,1}$ >120 GeV/*c* (CMS, 10/nb)
- > 140k b-jets with p_T > 120 GeV/c (CMS, 10/nb)
- Understand medium response and energy radiation details, map path-Length dependence (e.g. radiative ~L², collisional ~L)

parto


Heavy quark probes of the medium

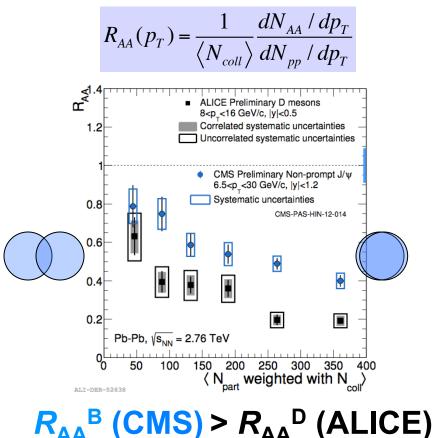
- Energy loss expected to depend on parton mass
- First indication at LHC:



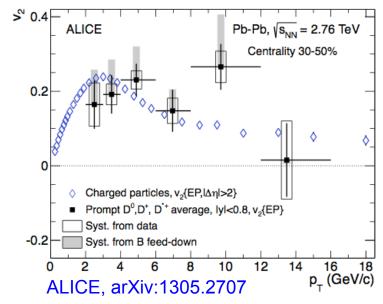
Heavy quark probes of the medium

- Energy loss expected to depend on parton mass
- First indication at LHC:

- Azimuthal anisotropy v₂
 - strength of collectivity
 - mean free path of partons

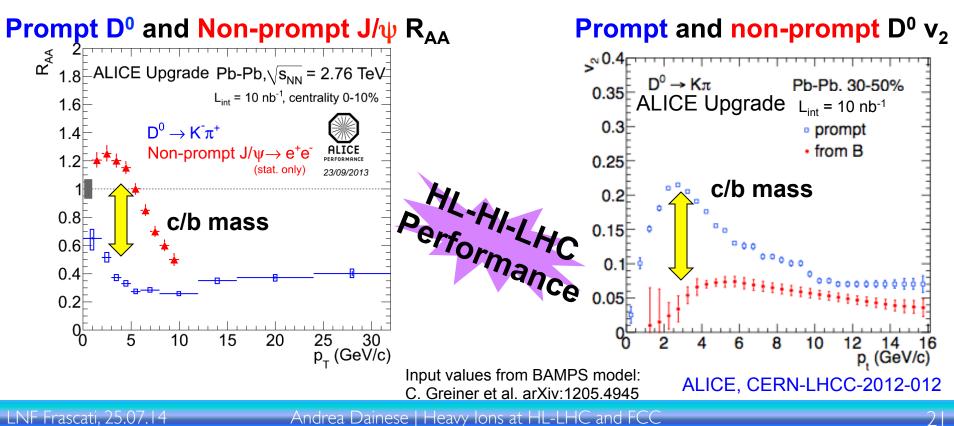

R_{AA}^{B} (CMS) > R_{AA}^{D} (ALICE)

I N F N


Heavy quark probes of the medium

- Energy loss expected to depend on parton mass
- First indication at LHC:

- Azimuthal anisotropy v_2
 - strength of collectivity
 - mean free path of partons
- Charm hadrons have v₂>0, comparable to light hadrons

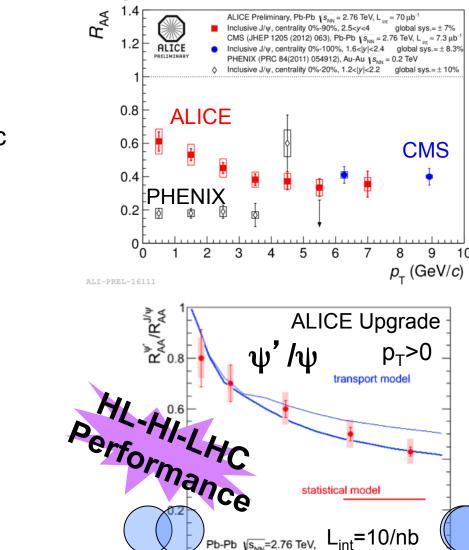

Heavy quark collective flow?

HF suppression and flow: performance C^{r} HL-LHC \rightarrow exploit the potential of HQ as probes the in-medium interactions and of its thermalization

- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP

 R_{AA} and v_2 of D and B in a wide p_T range

Sensitive to medium viscosity and equation of state

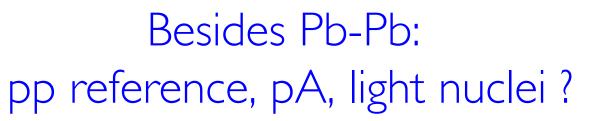

Low-p_T charmonium: performance

- Low-p_T J/ψ at the LHC is less suppressed than at RHIC
 - Despite the x2-3 higher density
- ψ regeneration from uncorrelated c and c in a deconfined medium?

Braun-Muzinger and Stachel, PLB490(2000) 196 Thews et al, PRC63 (2001) 054905

High statistics \rightarrow explore this "new" probe of deconfinement

- Understand the underlying mechanism that binds deconfined heavy quark pairs
- Add information! E.g. low-p_T ψ' /ψ discriminates between models


100

200

300

ALICE, CERN-LHCC-2013-014

400 N_{part}

- pp reference at 5.5 TeV required
- p-Pb run at high luminosity (exploit upgraded detectors)
- p-Ar and Ar-Ar: a possibility to be considered for schedule after LS2
- p-Ar, d-Pb, α-Pb: vary initial conditions/geometry and study effects on collectivity observables

> e.g. d-Pb and α -Pb provide highly-asymmetric initial state

- Ar-Ar: interesting from the point of view of changing the geometry?
 - Much larger luminosity should be possible (~ 2 orders of magnitude: peak ~10³⁰, compared to <10²⁸ for Pb-Pb)
 - However, hard process scale with A^2 , Pb/Ar = 27
 - \rightarrow 1 month Ar-Ar, could give equiv hard yields as 2-3 months Pb-Pb

Outline

- HI physics programme at HL-LHC
- Detector upgrades
- Examples of projected performance

The FCC design study

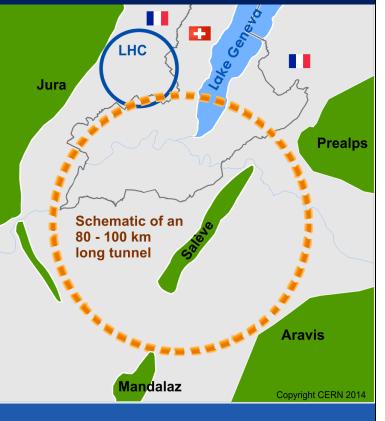
- Ions at the FCC
- High-density QCD in the initial state: saturation

Andrea Dainese | Heavy Ions at HL-LHC and FCC

High-density QCD in the final state: QGP

HI@FCC > 2035

Kickoff workshop, Geneva, Feb 2014: https://indico.cern.ch/event/282344/


Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- *e*+*e* collider (*FCC-ee*) as potential intermediate step
- *p-e* (*FCC-he*) option
- 80-100 km infrastructure in Geneva area

LNF Frascati, 25.07.12

Future Circular Collider Study Michael Benedikt FCC Kick-Off 2014

Andrea Dainese | Heavy lons at HL-LHC and FCC

5

| N F N

Ions at FCC: energies and luminosities

Centre-of-mass energy per nucleon-nucleon collision:

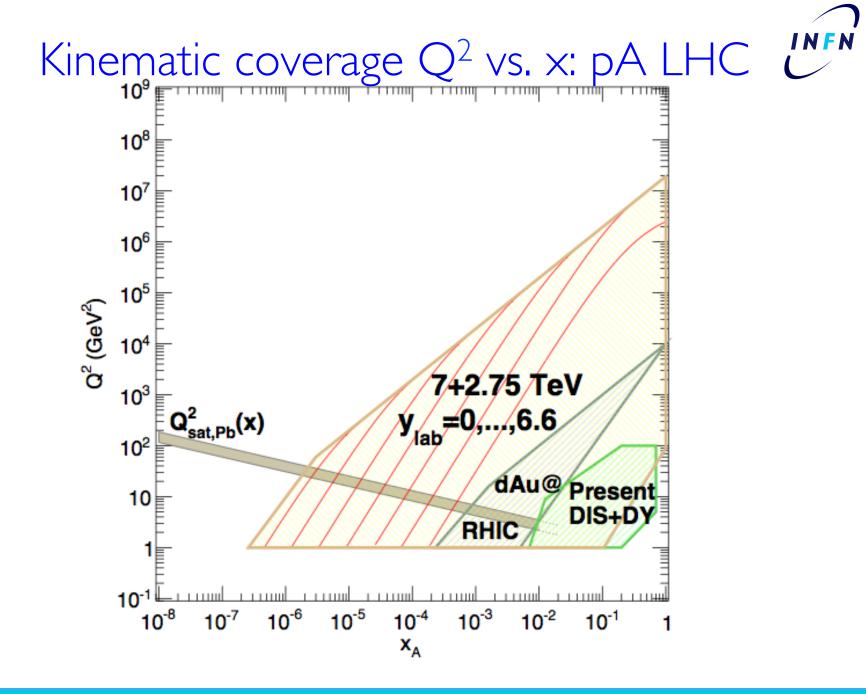
 First (conservative) estimates of luminosity (in comparison with LHC): x5 larger L_{int} per month of running

	LHC Run 2 $[1]$	LHC after LS2 [1]	FHC [2]
Pb–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{27}	5×10^{27}	$13 imes 10^{27}$
Pb–Pb $L_{\rm int}$ / month (nb ⁻¹)	0.8	1	5
p–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{29}	t.b.d.	$3.5 imes10^{30}$
p–Pb $L_{\rm int}~({\rm nb}^{-1})$	80	t.b.d.	1000

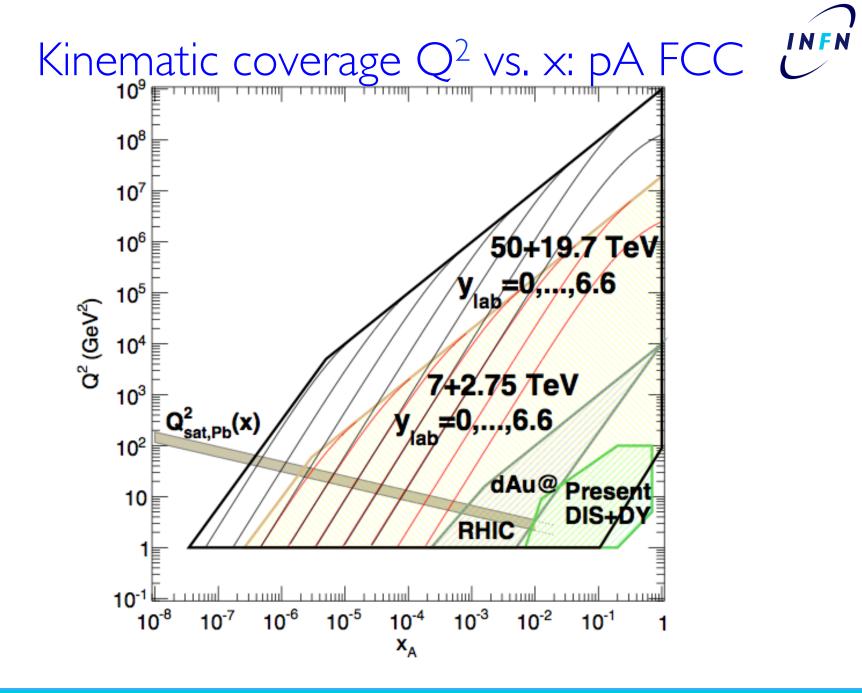
Possibility to increase L_{int} using nuclei with slightly smaller *Z*?
 Some of the limiting factors (e.m. process) go with "large" powers of *Z* Could (optimistically) aim for programme of 100/nb (LHC x10)

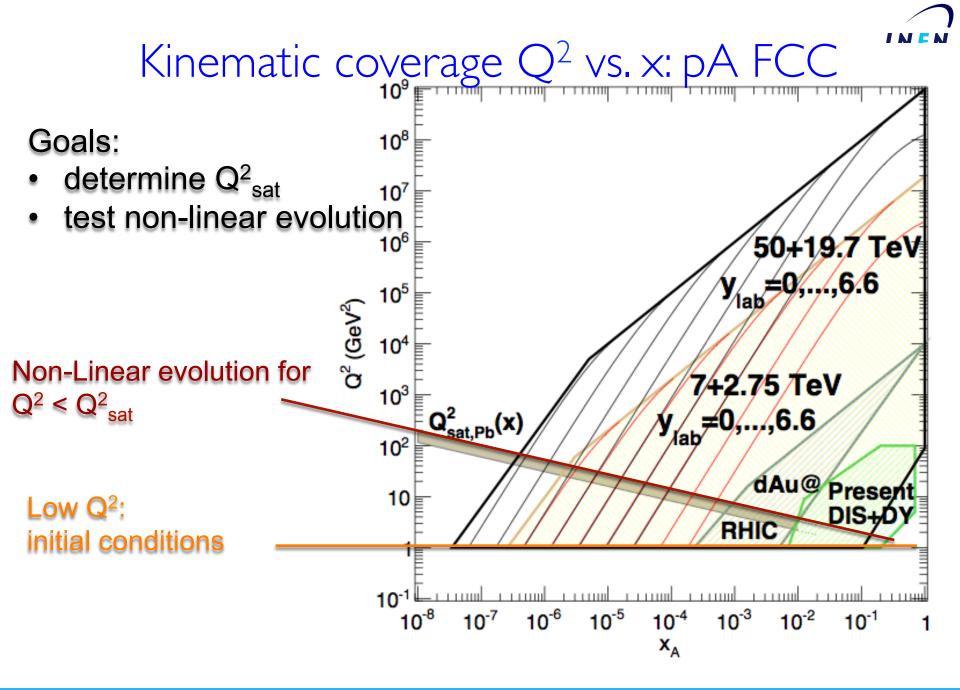
High-density QCD in the initial state: Saturation at low x

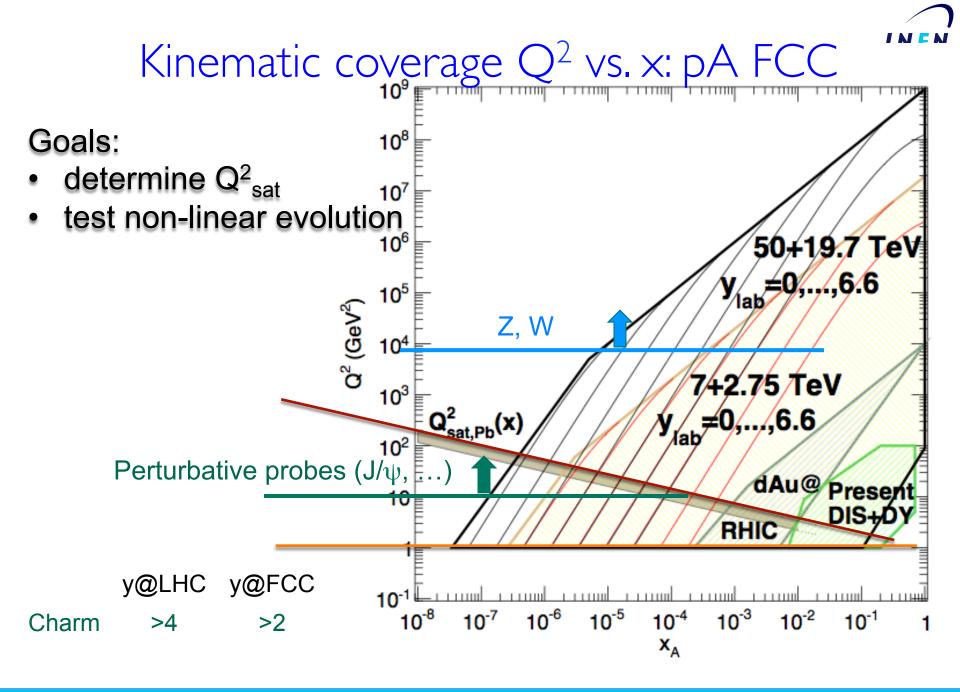
 Explore new unknown regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Saturation, Non-linear PDF evolution
 Enhanced in nuclei: more gluons per unit transverse area

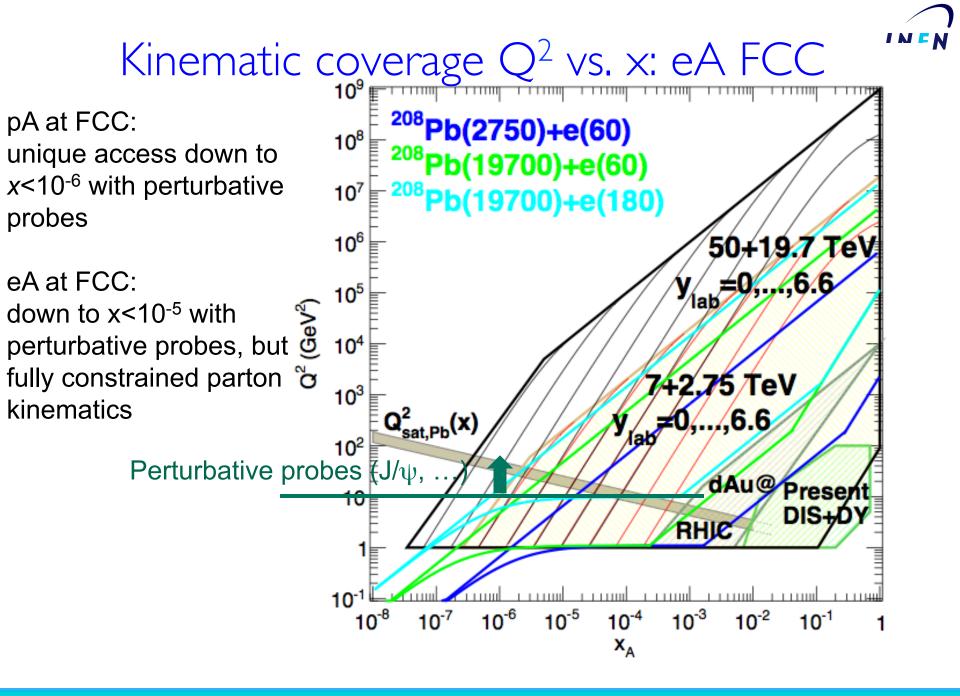

Saturation
$$Q_S^2 \sim \frac{Ag(x, Q_S^2)}{\pi A^{2/3}} \sim A^{1/3}g(x, Q_S^2) \sim A^{1/3}\frac{1}{x^{\lambda}} \sim A^{1/3}\left(\sqrt{s} \ e^y\right)_{(\lambda \sim 0.3)}^{\lambda}$$

[fixed Q] DENSE REGION DILUTE REGION

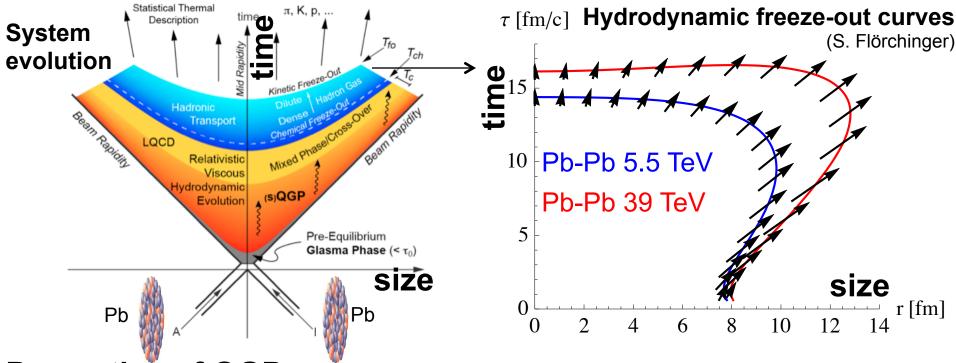

Saturation affects process with $Q^2 < Q_S^2$ Explore saturation region:

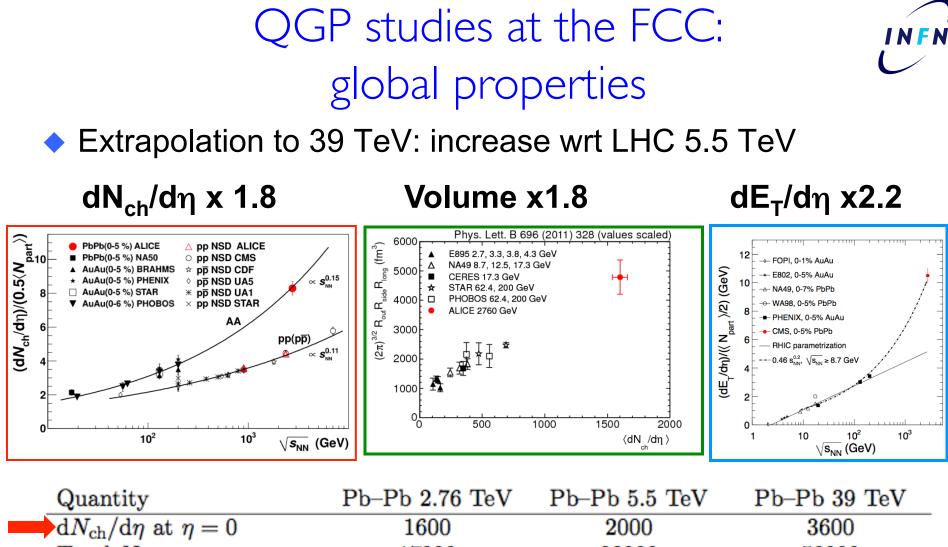

 \rightarrow decrease x (larger \sqrt{s} , larger y)


 \rightarrow increase A



LNF Frascati, 25.07.14

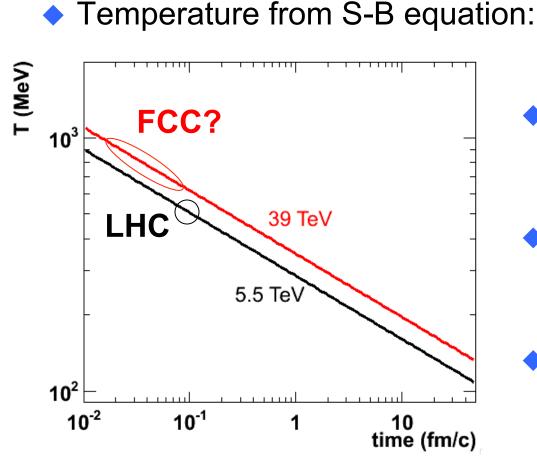




Quark-Gluon Plasma studies at FCC \mathcal{C}^{MFN}

Properties of QGP:

- QGP volume increases strongly
- QGP lifetime increases
- Collective phenomena enhanced (better tests of QGP transport)
- Initial temperature higher
- Equilibration times reduced

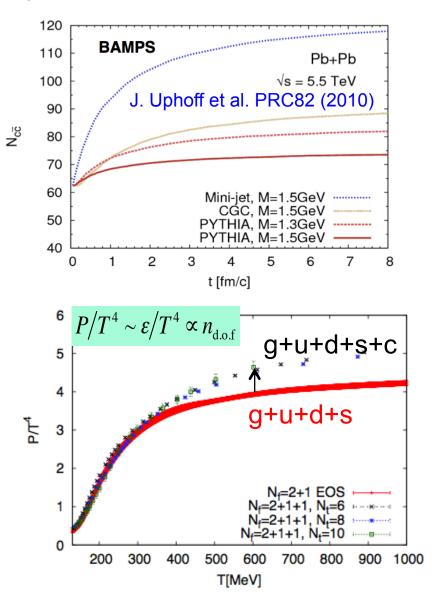


$dN_{\rm ch}/d\eta$ at $\eta = 0$	1600	2000	3600
Total $N_{\rm ch}$	17000	23000	50000
$dE_{\rm T}/d\eta$ at $\eta = 0$	$2 { m TeV}$	$2.6 \mathrm{TeV}$	$5.8 { m TeV}$
BE homogeneity volume	$5000 \ {\rm fm}^3$	$6200 {\rm fm}^3$	$11000 { m ~fm^3}$
BE decoupling time	$10 \; {\rm fm}/c$	$11 \; { m fm}/c$	$13~{ m fm}/c$

QGP studies at the FCC: temperature

• Energy density with Bjorken formula: $\varepsilon(\tau) = \frac{E}{V(\tau)} = \frac{1}{c\tau \pi R_A^2} \frac{dE_T}{d\eta}$

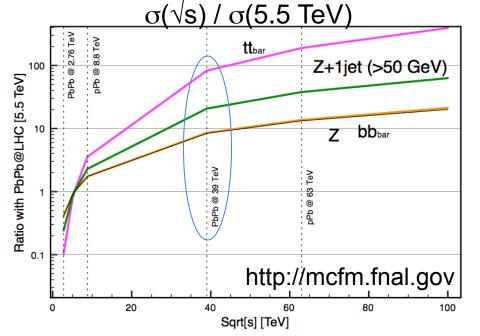
 $T(\tau) = \sqrt[4]{\varepsilon(\tau) \frac{30}{\pi^2 n_{d.o.f.}}}$


- 20% larger for the same time
 - E.g. 360 MeV at 1 fm/c
- Initial time (QGP formation time)?

Usually ~0.1 fm/c for LHC

- Could be smaller at FCC
- Significantly larger initial temperature? Could reach close to 1 GeV?

Charmed QGP? Secondary/thermal charm?

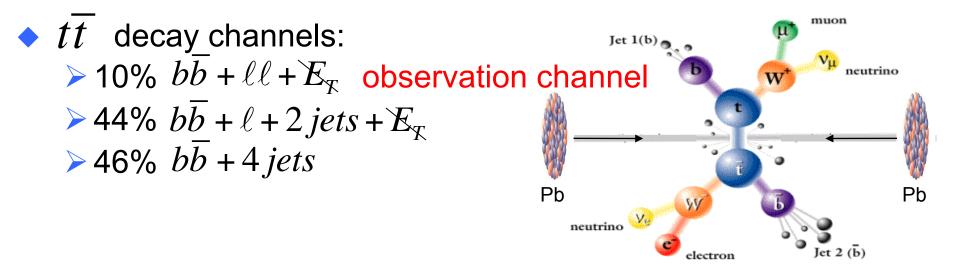

- Expect abundant production of c-cbar pairs in the medium
- Calculations for LHC 5.5TeV: + 15-45% wrt hard scattering
 - At 39 TeV could become comparable with initial production
- Should show up as "thermalized" component at 1-2 GeV
- Secondary charm yield very sensitive to the initial temperature and to the temperature evolution
- If charm is produced abundantly during the equilibration of the medium, the additional d.o.f. should have impact on the equation of state
 - S. Borsanyi et al., arXiv:1204.0995

A new set of Hard Probes

 LHC heavy-ion programme shows that it is possible to reconstruct HEP-like observables in HI collisions
 Jets, b-jets, Z⁰, W, γ-jet correlations ...

◆ Large √s and *Q* of the FCC will make new probes abundantly available, for the study of the interaction mechanisms, of the medium density and its time evolution

 Larger increases for larger masses:


➢ 80x for top

- 20x for Z⁰ + 1 Jet(p_T>50 GeV)
- > 8x for bottom or Z⁰

parto

no quenching

Top quarks in Pb-Pb at HL-LHC and FCC \mathcal{C}^{MFN}

Estimate for observation channel in CMS (CMS PAS-FTR-2013-025)

- \rightarrow ~500 events for 10 nb⁻¹ Pb-Pb 5.5 TeV ("HL-LHC")
- ◆ FCC: with 100 nb⁻¹, x800 more wrt HL-LHC
- → FCC with CMS-like setup, ~4x10⁵ for "observation channel"
 - could be 4-5x more in the other channels (but higher background)
- \rightarrow few 10³ with p_T > 0.5 TeV
- \rightarrow few 10² with p_T > 1 TeV

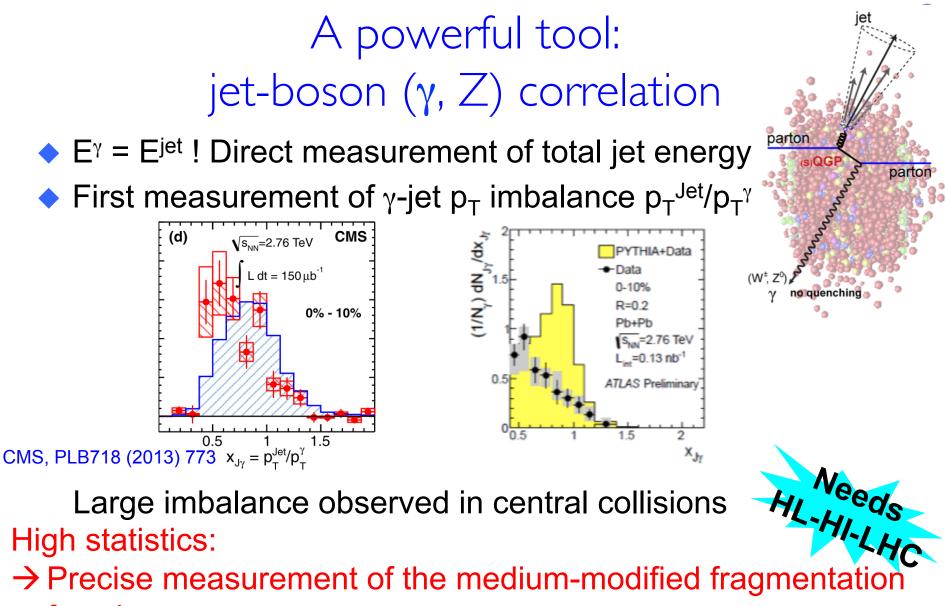
Summary

- "HL-HI-LHC" (Runs 3+4): fully exploit the potential of the machine as a high-luminosity HI collider
 - > Pb-Pb >10/nb \rightarrow x10 wrt Run 2, x100 for minimum bias (ALICE)
 - > pp reference at Pb-Pb energy; p-Pb; possibly light ions
- Rich Physics programme prepared by the experiments
 - Upgraded detectors, very large statistics, diverse trigger approaches, complementary strengths of the experiments

Discussions started on opportunities with heavy ions at FCC

- Saturation physics in pA, eA and γA
- QGP physics
- > New inputs and ideas are most welcome!
 - → WS at CERN Sept 22-23: <u>https://indico.cern.ch/event/331669/</u>

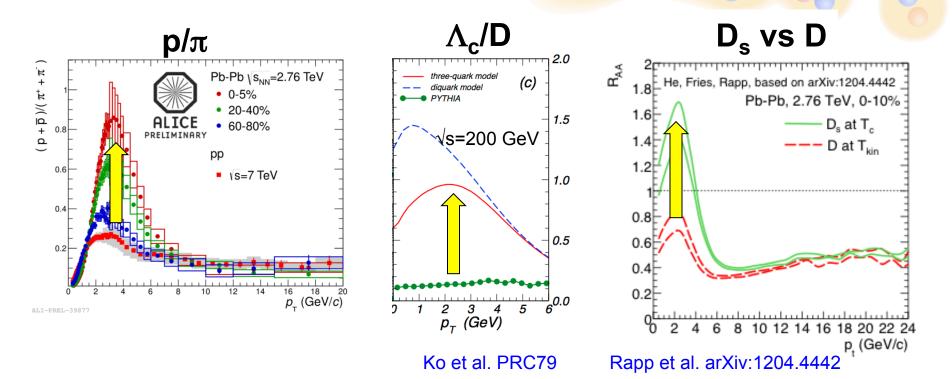
EXTRA SLIDES


LNF Frascati, 25.07.14

Andrea Dainese | Heavy Ions at HL-LHC and FCC

40

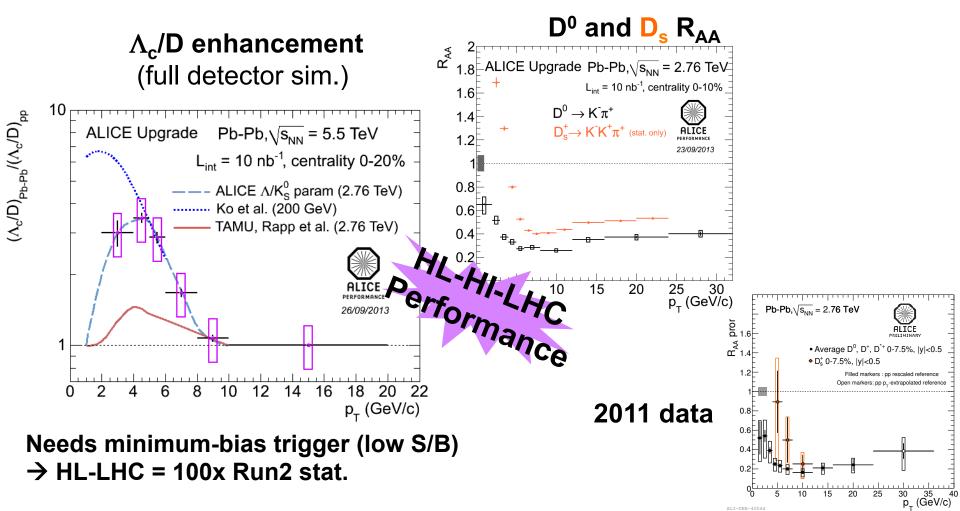
Available Documents


- ◆ ALICE Upgrade LOI: CERN-LHCC-2012-012
 - > Addendum (Muon Forward Tracker): CERN-LHCC-2013-014
- ◆ ALICE inner tracker upgrade CDR: CERN-LHCC-2012-013
 - TDR in preparation (also for TPC, electronics, DAQ-HLT-Offline)
- CMS HI HL-LHC projections: CMS-PAS-FTR-13-025
- Presentations at the Heavy Ion Town Meeting (June 2012):
 - http://indico.cern.ch/event/Hltownmeeting
- Inputs by ALICE, ATLAS, CMS to the ESPG meeting Cracow (Sep 2012)
 - http://indico.cern.ch/confld=182232
 - HI community presentation (H. Appelshaeueser) <u>http://indico.cern.ch/getFile.py/access?</u> <u>contribId=16&sessionId=2&resId=0&materialId=slides&confId=1822</u> <u>32</u>

- function
- \rightarrow Differential studies as a function of event geometry

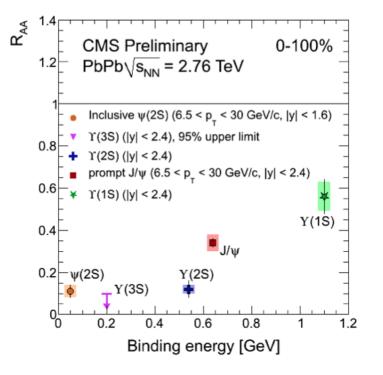
Heavy flavour in-medium hadronization? $\mathcal{C}^{\mathsf{MFN}}$

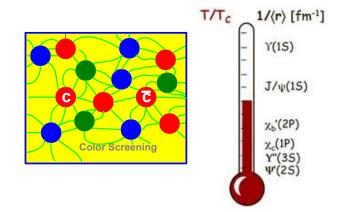
Baryon/meson enhancement and strange-enh. → most direct indication of light-quark hadronization in a partonic system
 Measure this in the HF sector! Does it hold for charm?
 Charm baryons (Λ_c) and charm-strange mesons (D_s)



LNF Frascati, 25.07.14

Andrea Dainese | Heavy Ions at HL-LHC and FCC




• $\Lambda_c \rightarrow pK\pi$ and $D_s \rightarrow KK\pi$ ($c\tau$ =60 and 150 μ m) measured with good precision in ALICE with upgrades and 10/nb

Quarkonium suppression

- Quarkonium sequential dissociation: direct probe of deconfinement and of the medium temperature
- First hint of sequential pattern

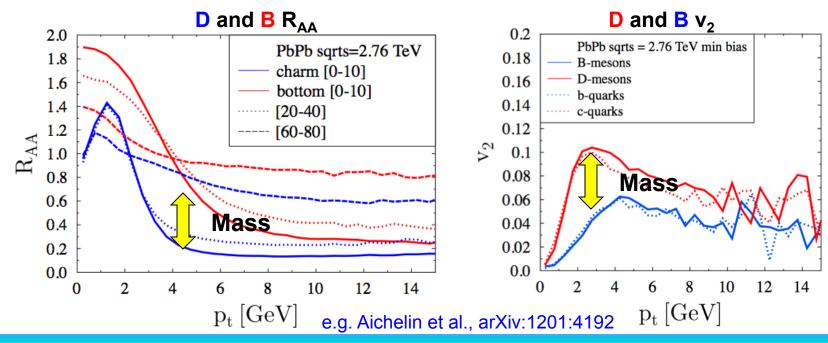
High statistics → precise multidifferential measurements E.g. (CMS, 10/nb):

Y(Is)	Y(2s)	Y(3s)
270k	40k	7k

CMS, arXiv:1208.2826 and PRL 109 (2012) 222301

CMS, PAS-FTR-13-025

Andrea Dainese | Heavy Ions at HL-LHC and FCC

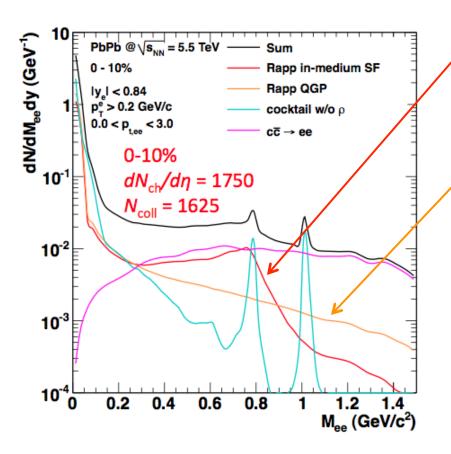


Heavy quark probes of the medium

HL-LHC \rightarrow exploit the potential of HQ as probes the in-medium interactions and of its thermalization

- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP
 - Sensitive to medium viscosity and equation of state

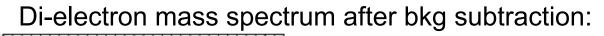
• Measure precisely R_{AA} and v_2 of D and B in a wide p_T range

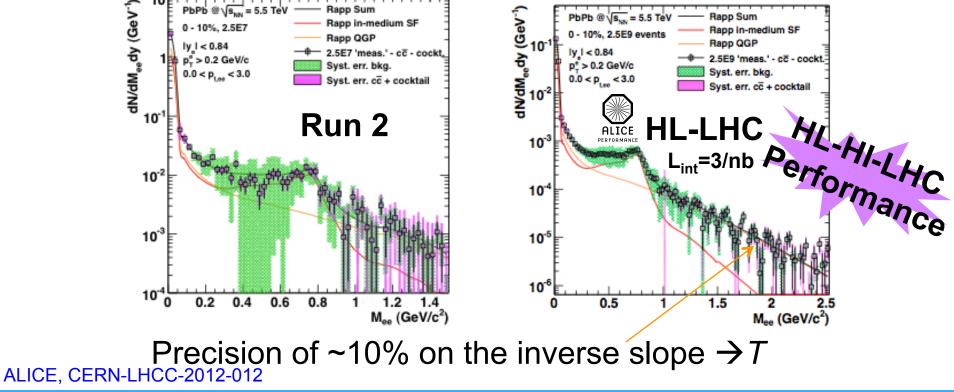

LNF Frascati, 25.07.14

Andrea Dainese | Heavy Ions at HL-LHC and FCC

Low-mass di-leptons

 Comprehensive measurement of low-mass di-leptons allows to address these fundamental questions:

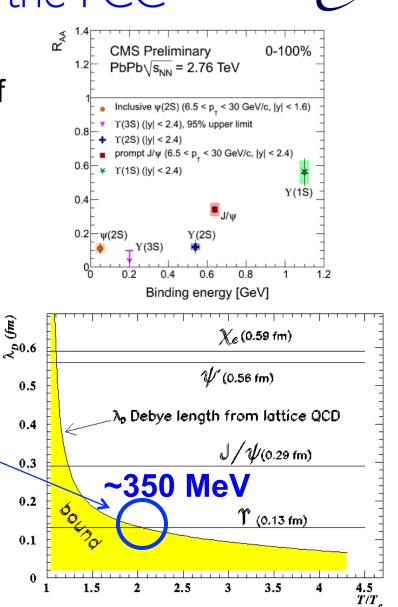

Restoration of the chiral symmetry \rightarrow Melting/broadening of the ρ meson, via $\rho \rightarrow l^+l^-$


Profile system temperature during its evolution \rightarrow Di-leptons from real and virtual photons $\gamma \rightarrow |^+|^-$

- ALICE: new inner tracker + dedicated run at 0.2 T (+3/nb)
 - → electron acceptance down to $p_{\rm T}$ = 50 MeV/*c*

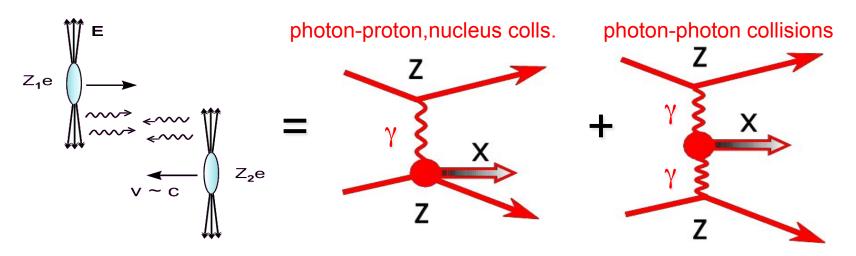
Needs minimum-bias trigger (low S/B) \rightarrow HL-LHC = 100x Run2 stat.

LNF Frascati, 25.07.14


Y(IS) melting at the FCC

- Sequential quarkonium melting (according to binding energy), one of the most direct probes of deconfinement
- Indication of sequential melting at LHC, but...
- Y(1S) R_{AA}~0.5: consistent with suppression of higher states only
- Y(1S) expected to melt at ~350 MeV

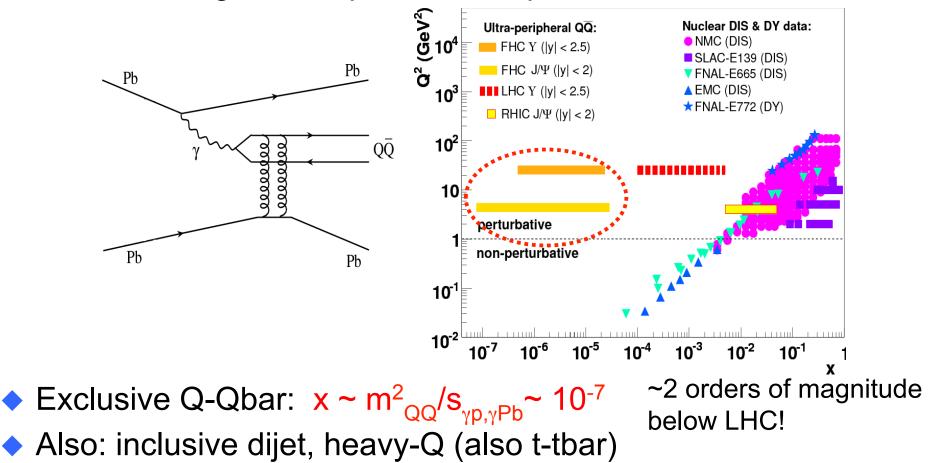
Digal,Petrecki,Satz PRD64(2001) confirmed by recent calculations, e.g. Miao, Mócsy, Petreczky, NPA (2011)


→ May not melt at LHC

→ Full quarkonium melting at FCC?

γ -induced collisions at FCC (Pb-Pb)

- Electromagnetic ultra-peripheral collisions (UPC): b_{min}>R_A+R_B
- HE ions generate strong EM fields from coherent emission of Z=82 p's:


- Huge photon fluxes:
 - > $\sigma(\gamma$ -Pb) ~ Z² (~10⁴ for Pb) larger than in pp
 - > $\sigma(\gamma-\gamma) \sim Z^4$ (~5.10⁷ for PbPb) larger than in pp

```
Max. FCC \gamma\gamma, \gamma N \sqrt{s} energies:
```

PbPb:
$$\sqrt{s_{\gamma\gamma}} \sim 1.2 \text{ TeV } \sqrt{s_{\gammaPb}} \sim 7 \text{ TeV}$$

pPb: $\sqrt{s_{\gamma\gamma}} \sim 6 \text{ TeV } \sqrt{s_{\gammap}} \sim 10 \text{ TeV}$

γ-Pb physics at FCC (Pb-Pb)

 Sensitive to <u>very</u> small x gluon density: powerful handle on saturation region with perturbative probes

