Observables for quarks and gluons orbital angular momentum distributions

Simonetta Liuti University of Virginia



2<sup>nd</sup> Workshop on High p<sub>T</sub> Physics in Hot and Dense Nuclear Matter
INFN, Laboratori Nazionali di Frascati
July 25<sup>th</sup>, 2014

Spin Crisis is far from over: open questions (and ramifications)

Gluon spin contribution to the sum rule has a large error

Role of Orbital Angular Momentum is being explored

Transverse spin (sum rules...?)

Existence of large Single Spin Asymmetries (SSA) in QCD:
 e.g. Polarized hyperon production

 The deuteron: new structure functions, b<sub>1</sub>, b<sub>2</sub>, and access to gluons OAM due to the cancellation of proton and neutron anomalous magnetic moments

## Outline

## 1. Definitions

- 2. Measurements/Observables
- 3. Partonic interpretation
- 4. The parity issue
- 5. Spin 1
- 6. Conclusions

The spin crisis in a "cartoon"

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \mathcal{L}_{q} + \mathcal{J}_{g}$$
$$\mathcal{L}_{g} \quad 33\% \qquad \Delta\Sigma \qquad \mathbf{J}_{g} \quad 33\% \qquad \mathbf{J}_{g}$$



Jaffe Manohar

Ji

## How does OAM enter the picture in QCD?



#### Define Angular Momentum through the QCD Energy Momentum Tensor

1

#### Sum Rule: Part I

First define the angular momentum components

then parametrize the EMT in terms of form factors A, B, C

$$T^{\mu\nu} = A(\gamma^{\mu}\overline{P}^{\nu} + \gamma^{\nu}\overline{P}^{\mu}) + B\left(\frac{i\sigma^{\mu\alpha}\Delta_{\alpha}}{2M}\overline{P}^{\nu} + \frac{i\sigma^{\nu\alpha}\Delta_{\alpha}}{2M}\overline{P}^{\mu}\right) + C\frac{\Delta^{\mu}\Delta^{\nu} - \Delta^{2}g^{\mu\nu}}{M}$$

Finally, connect the EMT matrix element with AM components

$$J_q = \frac{1}{2} \left( A_q + B_q \right) \Longrightarrow \sum J_q + J_g = \frac{1}{2}$$

Jaffe Manohar (1990) Ji (1997)

## Sum Rule: Part II

The second part of the sum rule is about finding a Partonic Interpretation and the Observables

# This allows one to connect in OCD the EMT form factors to (CS) 1997 X. Ji suggests Deeply Virtual Compton Scattering (DVCS) the 2<sup>nd</sup> moments of generalized parton distributions (GPDs) as a way to observe J<sub>q</sub>, J<sub>g</sub>



$$\frac{1}{2}\int dx \, x \Big[ H_{q,g}(x,0,0) + E_{q,g}(x,0,0) \Big] = A_{q,g} + B_{q,g} = J_q + J_g$$

 $\Delta\Sigma + L_{\alpha}$ 

## Quark-quark correlator: mestorector

$$W_{\Lambda\Lambda'}^{\gamma^{+}\gamma_{5}} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \Lambda' | \bar{\psi} \left(-\frac{z}{2}\right) \gamma^{+}\gamma_{5}\psi \left(\frac{z}{2}\right) | p, \Lambda \rangle_{z^{+}=0, \mathbf{z}_{T}=0}$$

$$W_{\Lambda\Lambda'}^{\gamma^{+}\gamma_{5}} = \frac{1}{2P^{+}} \overline{U}(p', \Lambda') \left[\gamma^{+}\gamma_{5}\tilde{H} + \frac{\gamma_{5}\Delta^{+}}{2M}\tilde{E}\right] U(p, \Lambda) \rangle$$

$$= \Lambda \delta_{\Lambda,\Lambda'}\tilde{H} + \delta_{\Lambda,-\Lambda'} \frac{\Delta_{1} - i\Lambda\Delta_{2}}{2M} \zeta \tilde{E}$$

$$k, \lambda$$

$$\mathcal{H}, \mathcal{E}$$

$$p', \Lambda'$$

## Helicity Amplitudes





$$A_{\Lambda'\lambda',\Lambda\lambda} ~~= \int rac{dz^-}{2\pi} e^{ixP^+z^-} ~\langle p',\Lambda' \mid \mathcal{O}_{\lambda'\lambda}(z) \mid p,\Lambda 
angle ert_{z^+=0} \,,$$

$$egin{aligned} \mathcal{O}_{++}(z) &=& ar{\psi}\left(-rac{z}{2}
ight)(1+\gamma_5)\gamma^+\psi\left(rac{z}{2}
ight) \ \mathcal{O}_{--}(z) &=& ar{\psi}\left(-rac{z}{2}
ight)(1-\gamma_5)\gamma^+\psi\left(rac{z}{2}
ight) \end{aligned}$$

acob Wick helicity: 
$$h = \vec{S} \cdot \vec{p}$$



≠ light front helicity

rity relations: 
$$A_{-\Lambda'-\lambda',-\Lambda-\lambda} = (-1)^{\Lambda'+\lambda'-\Lambda-\lambda} A_{\Lambda'\lambda',\Lambda\lambda}$$

(because helicity and LF helicity are related by a unitary transformation the parity relations are invariant, M. Diehl, Phys. Rep.)

Pa

## Connection with GPDs

## **Helicity basis**

$$H = A_{++,++} + A_{+-,+-} + A_{-+,-+} + A_{--,--}$$

$$i\frac{\Delta_2}{M}E = A_{++,-+} + A_{+-,--} - A_{-+,++} - A_{--,+-}$$

## **Transversity basis**

$$\pm |Y\rangle = \frac{1}{\sqrt{2}} (|+\rangle \pm i|-\rangle)$$

$$H = A_{++,++} + A_{+-,+-} + A_{-+,-+} + A_{--,--}$$

$$E \frac{\Delta_2}{M} E = A_{++,++}^Y + A_{+-,+-}^Y - A_{-+,-+}^Y - A_{--,--}^Y$$



1

## Observables



$$A_{LU} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \Longrightarrow \frac{\sqrt{t_0 - t}}{2M} \left[ F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{F} \right]$$

$$A_{UL} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \Rightarrow \frac{\sqrt{t_0 - t}}{2M} \bigg[ F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) \mathcal{H} - \frac{t}{4M^2} F_2 \xi \tilde{\mathcal{E}} \bigg]$$

$$A_{UT} = \frac{d\sigma^{\Rightarrow} - d\sigma^{\Leftarrow}}{d\sigma^{\Rightarrow} + d\sigma^{\Leftarrow}} \Rightarrow \frac{t_0 - t}{4M^2} \Big[ -F_1 \mathcal{E} + \xi (F_1 + F_2) \xi \tilde{\mathcal{E}} + F_2 \mathcal{H} \Big]$$

Belitsky, Kirchner, Mueller, NPB629 (2002)





#### Model dependent extractions of $J_u$ and $J_d$



O. Gonzalez Hernandez et al., Phys. Rev. C88, 065206; arXiv:1206.1876

7/27/14

## The other approach: Jaffe Manohar

#### In LC gauge rewrite AM using Dirac eqn. to isolate spin terms

Jaffe Manohar's partonic picture

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \mathcal{L}_q + \Delta G + \mathcal{L}_g$$

> quark and gluon spin components are identified with the n=1 moments of spin dependent structure functions from DIS  $\rightarrow \Delta\Sigma$  and  $\Delta G$ .



We now know where OAM could enter the picture ... but what is the interpretation of quark and gluon fields OAM



## Consider twist 3 contributions

OAM can be defined through a relation analogous to Ji's at tw 2

$$\int dx \, x G_2 = -\frac{1}{2} \int dx \, x (H+E) + \frac{1}{2} \int dx \, \tilde{H} \quad \text{Polyakov et al. (2000)} \\ -L_q \quad -J_q \quad S_q \quad S_q \quad \text{Polyakov et al. (2011)} \\ W_{\Lambda'\Lambda}^{\gamma^i} = \frac{1}{2P^+} \overline{U}(p',\Lambda') \left[ \frac{\Delta_T^i}{M} G_1 + \frac{i\sigma^{ji}\Delta_j}{M} G_2 \frac{Mi\sigma^{i+}}{P^+} G_4 + \frac{\Delta_T^i}{P^+} \gamma^+ G_3 \right] U(p,\Lambda),$$

#### Twist 3 decomposition of hadronic tensor in various notations

| Polyakov et al. [13] | $2G_1$                | $G_2$                | $G_3$                   | $G_4$                                |
|----------------------|-----------------------|----------------------|-------------------------|--------------------------------------|
| Meissner et al. [3]  | $2\widetilde{H}_{2T}$ | $\widetilde{E}_{2T}$ | $E_{2T}$                | $H_{2T}$                             |
| Belitsky et al. [16] | $E^3_+$               | $\widetilde{H}^3$    | $H_{+}^{3} + E_{+}^{3}$ | $\frac{1}{\xi}\widetilde{E}_{-}^{3}$ |

TABLE I: Comparison of notations for different twist 3 GPDs.

arXiv:1310.5157

G<sub>2</sub> can describe both canonical (Jaffe Manohar) and Ji's OAM

Ji 
$$L_q(x) = L_q^{WW}(x) + \overline{L}_q(x)$$
  $\longrightarrow$  F-type tw3  
JM  $\mathcal{L}_q(x) = L_q^{WW}(x) + \overline{\mathcal{L}}_q(x)$ ,  $\longrightarrow$  D-type tw3

Hatta, 2011

$$\int dx \, x G_2 = -\int dx \, L_q^{WW}$$

$$\int dx \, x^2 G_2^{tw3} = -\frac{2}{3} d_2 \quad \checkmark$$

7/27/14

## In arXiv:1310.5157 we asked what is the spin configuration corresponding to quark OAM?

Helicity Amplitudes analysis done using twist 3 GTMDs

$$-\frac{4}{P^{+}}\left[\frac{\bar{\mathbf{k}}_{T}\cdot\mathbf{\Delta}_{T}}{\Delta_{T}}F_{27}+\Delta_{T}F_{28}-\left(\frac{\bar{\mathbf{k}}_{T}\cdot\mathbf{\Delta}_{T}}{\Delta_{T}}G_{27}+\Delta_{T}G_{28}\right)\right] = A_{++,++}^{tw3}+A_{+-,+-}^{tw3}-A_{-+,-+}^{tw3}-A_{--,--}^{tw3}$$

$$G_{2}$$

$$G_$$

Knowing the helicities configuration allows us to interpret why we have a net OAM in the proton

$$G_2 \rightarrow \sigma_{ij} \Delta^j \Rightarrow \vec{S}_L \times \vec{\Delta}$$

If the proton is polarized longitudinally, the quark distribution is going to be displaced transversely, along  $\Delta$ 



Distribution of an unpolarized quark in a proton polarized along the longitudinal axis

$$\left( A_{++,++} + A_{+-,+-} + A_{-+,-+} + A_{--,--} \right) + \left( A_{++,++}^{tw3} + A_{+-,+-}^{tw3} - A_{-+,-+}^{tw3} - A_{--,--}^{tw3} \right)$$

$$\approx H - i\Delta_2 G_2$$



Calculation done in WW approximation using the reggeized diquark model

$$L_q(x,0,0) = x \int_x^1 \frac{dy}{y} (H_q(y,0,0) + E_q(y,0,0)) - x \int_x^1 \frac{dy}{y^2} \widetilde{H}_q(y,0,0),$$







2

0

-2

-4

-6

-6

4 3

2

1

0

-1

-2

-3

-4

6









-4 -2 0 2 4



7/27/14





 $\rho_2^{d}$  $\rho_{2^{u}}{}_{\scriptscriptstyle 2.0}$ 0.2 1.0 0.1 0.0 0.0 -1.0 -0.1 -2.0 -0.2 ₀ b<sub>y</sub>(fm) -10 -5 5 10 -5 5 0 -10 b<sub>y</sub>(fm)

in 2D

7/27/14

27

10

## Analogous situation as for E wrt. transverse spin (M. Burkardt)



$$\left(A_{++,++}^{X} + A_{+-,+-}^{X} + A_{-+,-+}^{X} + A_{--,--}^{X}\right) + \left(A_{++,++}^{X} + A_{+-,+-}^{X} - A_{-+,-+}^{X} - A_{--,--}^{X}\right)$$

$$\approx H - i\Delta_2 E$$



For  $G_2$  there is no preferential/"net" direction of  $k_T$  wrt. the "net" displacement along the +y axis

> No FSI (see gauge link contribution at  $\infty$ , M. Burkardt, "torque") > No k<sub>T</sub> contribution perpendicular to  $\Delta$  (parity violating)

#### "Net" OAM can exist in the transverse (orthogonal) direction!



Now that we understand all this, can we measure OAM?

First of all notice that in Wandzura Wilczek approximation

$$L_{q}(x,0,0) = x \int_{x}^{1} \frac{dy}{y} (H_{q}(y,0,0) + E_{q}(y,0,0)) - x \int_{x}^{1} \frac{dy}{y^{2}} \widetilde{H}_{q}(y,0,0), \quad \neq \mathbb{F}_{14}!$$

0.5

0.6

0.7

0.8

0.1

0.3

0.4

#### DVCS on a longitudinally polarized target

$$A_{UL,L} = \frac{N_{s_z=+} - N_{s_z=-}}{N_{s_z=+} + N_{s_z=-}} = \frac{\sqrt{2\epsilon(\epsilon+1)}\sin\phi F_{UL}^{\sin\phi}}{F_{UU,T} + \epsilon F_{UU,L}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL,L}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}} + \frac{\epsilon \sin 2\phi}{F_{UL} + \epsilon F_{UL} + \epsilon F_{UL}$$



## Parity issues with twist 2 GTMDs

## $\sigma_{ij}k_T^i \Delta_T^j \Rightarrow \vec{S}_L \cdot (\vec{k}_T \times \vec{\Delta}_T)$ Parity Odd: proton spin dotted into OAM

✓ The amps will cancel unless they are imaginary:
 A<sub>++</sub> = A<sup>\*</sup>\_\_\_\_; A<sub>+</sub> = A<sup>\*</sup>\_\_\_\_
 ✓ But this cannot be, as seen from CM system - at leading order - these will be real - all in same plane so there can be no relative phase between helicity amps.

#### ✓ <u>VERY IMPORTANT CAVEAT</u>:

On Light Front this does not happen because what is conserved is Light Front Parity, not P and T separately <u>C.Carlson&C.R. Ji, PRD67 (2003)</u>

#### BUT THAT IS NOT PARITY!!!

- > It is not OAM (naïve identification)
- It decouples from direct measurements of TMD/GPD observables
- $\succ$  Can it be measured at all?

Finally, how do we make a connection with polarization observables and OAM in heavy ions collisions?

## An important probe of Single Spin Asymmetries in QCD

SSA in QCD,

$$\frac{d\sigma(qq \to q^{\uparrow}q) - d\sigma(qq \to q^{\downarrow}q)}{d\sigma(qq \to qq)} = \alpha(Q^2) \frac{m_q}{\sqrt{s}} f(\theta). \quad (1)$$
  
Kane, Pumplin, Repko, 70's

is predicted to be small, but ...

.... measurements showed high transverse polarization values

$$pp \to \Lambda^{\uparrow}(\Lambda_{c}^{\uparrow})X$$

0 0  $\mathsf{P}_{\Lambda}$ 5  $x_F = .2$ -10-102 0 з 5  $x_F = .5$ 0 8 -20 POLARIZATION p=.3 -102 0 5 2 800-GeV 0 100-GeV -100 12-GeV x<sub>F</sub>=.6 -20 -10 $x_{F}=.4$ -2030 0 2 з 5 2 3 Ö TRANSVERSE MOMENTUM (GeV/c) K. Heller, PRD1997



$$\frac{dN}{d\xi} = 1 + \alpha_{\Lambda} P_{\Lambda}^{T} \cos \xi$$



... Early models (Dharmaratna and Goldstein, 90's) "recombination" should be present; recent calculations (Betz et al., X. Wang et al., use Wigner distribution based interpretations)





Ah ha! This is the same argument that allows us to observe the T-odd TMDs by understanding the role of the gauge links



And that allows us to observe GPDs through Single Spin Asymmetries (SSA)

$$2\tilde{H}_{T} + E_{T} \leftrightarrow h_{1}^{\perp}$$

$$E \leftrightarrow f_{1T}^{\perp}$$

$$\tilde{f}_{T} = 0$$



... we are in the process of modeling this with Generalized Fracture Functions

Transverse Spin Asymmetries for  $\Lambda$  in Target Fragmentation region



#### Fracture Function (Trentadue and Veneziano)

$$\begin{aligned} \mathcal{F}_{\Lambda_N;\Lambda'_\Lambda,\Lambda_\Lambda}^{\lambda_q}(x,k_T,z,p_T,Q^2) \ &= \ \sum_{\Lambda_X} \int \frac{d^3 P_X}{(2\pi)^3 2 E_X} \int \frac{d^4 \xi}{(2\pi)^4} e^{ik \cdot \xi} \\ \times \langle P,\Lambda_N \mid \bar{\psi}^{\lambda_q}(\xi) \mid P_h,\Lambda'_\Lambda;X \rangle \ \times \ \langle P_h,\Lambda_\Lambda;X \mid \psi^{\lambda_q}(0) \mid P,\Lambda_N \rangle. \end{aligned}$$



Spin 1 systems, due to

The presence of additional L components (S+D-waves)
 Isoscalarity

provide a crucial test the working of the angular momentum sum rules

#### How does Ji sum rule differ from JM in the deuteron?



Using GPDs from Goldstein, Gonzalez Hernandez, SL, PRD84

#### Deuteron Angular Momentum Sum Rule Phys.Rev. D86 (2012) 036008

## Longitudinal

$$J_q = \frac{1}{2} \int dx \, x \left[ H_q(x,0,0) + E_q(x,0,0) \right],$$
  
Nucleon  
$$F_1 + F_2 = \mathcal{G}_M$$
$$J_q = \frac{1}{2} \int dx \, x \, H_2^q(x,0,0),$$
  
Deuteron  
$$\mathcal{G}_M$$

M

#### **Transverse Deuteron**

Differently from the nucleon, in the transverse case, we are not finding the same relation (other GPDs describing) charge and tensor component enter...). More details later...

**Observables: DVCS from deuteron** 

$$A_{UT} \approx -\frac{4\sqrt{D_0}}{\Sigma} \Im m \left[ \mathcal{H}_1^* \mathcal{H}_5 + \left( \mathcal{H}_1^* + \frac{1}{6} \mathcal{H}_5^* \right) (\mathcal{H}_2 - \mathcal{H}_4) \right]$$
  
Subleading

Can the deuteron help us understand the role of gluon OAM? (Brodsky, Gardner, 2006)

By connecting 
$$L_g$$
 to SSA in  $lD \rightarrow l' \pi^{\pm} D'$ 

$$A_{UT}^{\pi^{\pm}}(\phi,\phi_{s}) \equiv \frac{1}{|\langle S_{p}\rangle|} \left( \frac{N_{\pi^{\pm}}^{\uparrow}(\phi,\phi_{s}) - N_{\pi^{\pm}}^{\downarrow}(\phi,\phi_{s})}{N_{\pi^{\pm}}^{\uparrow}(\phi,\phi_{s}) + N_{\pi^{\pm}}^{\downarrow}(\phi,\phi_{s})} \right) \equiv A_{UT}^{C} \sin(\phi+\phi_{s}) + A_{UT}^{S} \sin(\phi-\phi_{s}) + \cdots, C_{T}^{C} = 0$$

Both  $L_q$  and  $L_g$  contribute! Since  $L_q$  disappears because of isospin symmetry, if  $A^{UT}_{\pi}$  is 0 then  $L_g$  is 0

- Angular momentum in spin 1 → arXiv:1101.0581
- Observability of OAM→arXiv:1310.5157
- GPDs from flavor separated form factors →arXiv:1206.1876
- Chiral odd approach →arXiv:1311.0483, submitted
- Chiral even approach → arXiv:1012.3776, submitted

#### Conclusions and ... to explore ...

- $\checkmark$  G<sub>2</sub>, a twist 3 generalized parton distribution, can be measured directly, and it is interpreted as partonic OAM.
- We showed the helicity and spin structure of this quantity, that it can replace the previously suggested one, and that it does not violate Parity
- Hyperon polarization in pp collisions is yet another aspect of the spin problem and it is a manifestation of the same issues that affect TMDs
- Measurements at LHC will help clarify, but electron scattering experiments are crucial to explore the reaction mechanism (factorization and universality)
- ✓ We have been suggesting developments in the formalism based on the concept of GPDs (generalized fracture functions) that can describe all spin phenomena from the multi-GeV to TeV regimes.

## Back up



#### Several misidentifications in Kanazawa et al. (and in Lorce's talk)

- 1) The argument that  $\sigma_{ij}k_T^i\Delta_T^j$  conserves parity because it is a scalar is wrong: this quantity is not a scalar but the product of different vector components
- 2) The difference between Parity and LF Parity transformations shows up in the evaluation of the matrix element for  $F_{14}$

AM sum rule is obtained by connecting the quark matrix elements of n=2 terr

$$\begin{split} \left\langle p' \left| \bar{\psi}(0) \gamma^{\mu} i D^{\nu} \psi(0) \right| p \right\rangle &= \bar{U}(p', \Lambda') \gamma^{\mu} U(p, \Lambda) \bar{P}^{\nu} A_{20}(t) - \\ \bar{U}(p', \Lambda') \frac{i \sigma^{\alpha \mu} \Delta_{\mu}}{2M} U(p, \Lambda) \bar{P}^{\nu} B_{20}(t) + \frac{\Delta_{\mu} \Delta_{\nu}}{M} \bar{U}(p', \Lambda') U(p, \Lambda) C_{20}(t) \end{split}$$

#### with the matrix elements of the energy momentum tensor

$$\left\langle p' \left| T_{q}^{\mu\nu} \right| p \right\rangle = \overline{U}(p',\Lambda') \left[ \gamma^{(\mu} \overline{P}^{\nu)} A(t) - \overline{P}^{(\nu)} \sigma^{\mu)\alpha} \frac{\Delta_{\alpha}}{2M} B(t) + \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{M} C(t) \right] U(p,\Lambda)$$

$$\left(\frac{1}{2}\int dx \ x \left(H(x,0,0) + E(x,0,0)\right) = J_z^{q,g}\right)$$

$$ar{u}(p',\Lambda')i\sigma^{ij}rac{ar{k}_i\Delta_j}{M^2}u(p,\Lambda) \ F_{14}(x,0,\mathbf{k}_T^2,\mathbf{k}_T\cdotoldsymbol{\Delta}_T,oldsymbol{\Delta}_T^2;\eta) 
onumber \ = 2iMrac{ig(ar{\mathbf{k}}_T imesoldsymbol{\Delta}_Tig)_z}{M^2}\Lambda\delta_{\Lambda\Lambda'} \ F_{14}(x,0,\mathbf{k}_T^2,\mathbf{k}_T\cdotoldsymbol{\Delta}_T,oldsymbol{\Delta}_T^2;\eta)$$

## LPPapitarity

$$\bar{u}(\tilde{p}', -\Lambda'_{LF})(\mathbf{S}_L \cdot \mathbf{k}_T \times \mathbf{\Delta}_T) u(\tilde{p}, -\Lambda_{LF}) F_{14}(x, 0, \mathbf{k}_T^2, \mathbf{k}_T \cdot \mathbf{\Delta}_T, \mathbf{\Delta}_T^2; \eta) = (\eta_P)^2 2iM \frac{\left(\bar{\mathbf{k}}_T \times \mathbf{\Delta}_T\right)_z}{M^2} (\Lambda_{LF}) \delta_{\Lambda_{LF}\Lambda'_{LF}} F_{14}(x, 0, \mathbf{k}_T^2, \mathbf{k}_T \cdot \mathbf{\Delta}_T, \mathbf{\Delta}_T^2; \eta) (4)$$

## $F_{14}$ appears in the unintegrated structure functions for deep inelastic scattering with electroweak currents

$$\frac{1}{4} \left( T_{1\frac{1}{2};1\frac{1}{2}} + T_{1-\frac{1}{2};1-\frac{1}{2}} + T_{-1\frac{1}{2};-1\frac{1}{2}} + T_{-1-\frac{1}{2};-1-\frac{1}{2}} \right) = T_{1},$$

$$\frac{1}{4} \left( T_{1\frac{1}{2};1\frac{1}{2}} - T_{1-\frac{1}{2};1-\frac{1}{2}} + T_{-1\frac{1}{2};-1\frac{1}{2}} - T_{-1-\frac{1}{2};-1-\frac{1}{2}} \right) = \frac{\nu}{M^2} \sqrt{1 + \frac{M^2 Q^2}{\nu^2}} A_1,$$

$$\frac{1}{4} \left( T_{1\frac{1}{2};1\frac{1}{2}} - T_{1-\frac{1}{2};1-\frac{1}{2}} - T_{-1\frac{1}{2};-1\frac{1}{2}} + T_{-1-\frac{1}{2};-1-\frac{1}{2}} \right) = -\frac{\nu}{M^2} S_1 + \frac{Q^2}{M^2} S_2 + S_3,$$

$$\frac{1}{4} \left( T_{1\frac{1}{2};1\frac{1}{2}} + T_{1-\frac{1}{2};1-\frac{1}{2}} - T_{-1\frac{1}{2};-1\frac{1}{2}} - T_{-1-\frac{1}{2};-1-\frac{1}{2}} \right) = \frac{\nu}{2M^2} \sqrt{1 + \frac{Q^2 M^2}{\nu^2}} T_3,$$



F₁

G,

 $\mathsf{F}_3$ 

$$\begin{array}{l} G_{1} \propto (g'_{V}g_{V} + g'_{A}g_{A}) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-}) \\ + (g'_{V}g_{A} + g'_{A}g_{V}) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-}) \end{array} \begin{array}{l} g_{1} \\ F_{14} \end{array}$$

$$\begin{array}{l} parity \ odd \end{array}$$

$$\begin{array}{l} A_{1} \propto (g'_{V}g_{V} + g'_{A}g_{A}) \otimes (A_{++,++} - A_{-+,-+} - A_{--,--} + A_{+-,+-}) \\ + (g'_{V}g_{A} + g'_{A}g_{V}) \otimes (A_{++,++} - A_{-+,-+} + A_{--,--} - A_{+-,+-}) \end{array} \begin{array}{l} F_{14} \\ g_{1} \end{array}$$

 $F_{14}$  is the parity odd contribution to  $g_1$  and the parity even contribution to  $A_1$ !