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Outline
Broadening - saturation - Cronin effect

Towards the kinematic bound: large xT or xL

Jets: time dependent energy loss
The jet lifetime and energy conservation

Quenching of high-pT hadrons 
Attenuation of high-pT dipoles

Lessons from DIS
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Saturation scale and broadening
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The mean gluon transverse momentum rises with 1/x because the 
momenta of fusing gluons add up. Thus, non only the nuclear gluon 
density is reduced at small x (shadowing), but the mean gluon momentum 
rises. Such a modification of the gluon transverse momentum distribution 
is called color glass condensate (CGC), and the mean gluon momentum 
squared                  is called saturation scale.

How does this look like in the nuclear rest frame?
A parton propagating through a medium experiences pT-broadening:

Broadening is related to the universal dipole cross section:

x

z
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Measuring the saturation scale
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S.Domdey, D.Grünewald, B.K., H.J.Pirner, 2009

Broadening originates mainly from the first stage of hadronization. Broadening of the 
pre-hadron proceeds with a very small elastic cross section and can be disregarded.
•Thus, broadening is a sensitive probe for the production length,              , which was 
predicted to shrink for leading hadrons,               [B.K., F.Niedermayer, 1984].

                          This is confirmed by HERMES data.

lp / 1� zh

�p2
T / lp

Broadening in SIDIS
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High-pT hadrons can be produced coherently from 
multiple interactions in nuclei at very high energies
(LHC), but not at low energies of fixed target 
experiments. Correspondingly, the mechanisms for 
the Cronin enhancement are different.

B.K., J.Nemchik, A.Schafer, A.Tarasov, 
           PRL 88(2002)232303`

Cronin effect
Broadening leads to a nuclear enhancement, called Cronin effect.
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Cronin effect at RHIC: predicted and observed
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More realistic parametrization 
for the unintegrated gluon 

distribution improves the shape
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Color Glass Condensate models exaggerated 
the magnitude of the effects RdA = 0.75

That was the only successful prediction
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p�Pb
p
s = 5TeV

R.Vogt et al, arXiv: 1301.3395
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Cronin effect at LHC: predicted and observed

Again the only successful prediction

Most of the models, including CGC
exaggerated the magnitude of gluon shadowing

With the more realistic 
parametrization of the dipole cross section
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Deficit of energy towards the kinematical bound
The projectile hadron can be expanded over Fock states, some of which 
are resolved by the target, some not. A nucleus has a better resolution 
due to multiple interactions and resolves higher Fock components 
containing more constituents in the projectile hadron. The more 
participants it has, the more difficult is to give the main fraction of the 
beam energy to one of them. So on a nuclear target the projectile
parton distribution falls off at x → 1 steeper than on a proton.
          Any process is suppressed at forward rapidities 
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Initial state energy loss leads to an additional 
suppression at large     orxL xT

Suppression at forward rapidities
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ISI energy loss
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One can also approach 
the kinematic limit at the 
mid rapidity, but high pT.

Cronin effect at forward rapidities
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One can enhance the role 
of ISI energy loss either 
moving to forward 
rapidities, or higher pT, or 
both

Cronin ratio at LHC at forward rapidities
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Hard parton collision

High-pt parton scattering leads to 
formation of 4 cones of gluon radiation:
(i) the color field of the colliding partons 
    is shaken off in forward-backward 
    directions.
(ii) the scattered partons carry
    no field up to transverse 
    momenta kt<pt.

The final state partons 
are regenerating 
the lost color field by
radiating gluons and 
forming the up-down jets.

The coherence length/time 
of gluon radiation

First are radiated gluons 
with small longitudinal and 
large transverse momenta.

lc =
2Ex(1� x)
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Time dependent vacuum energy loss

How much energy is radiated over the path length L?
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Dead-cone effect: gluons with            are suppressed. 
Heavy quarks radiate less energy than the light ones.      

k

2 < x

2
m

2
q

0

2

4

6

8

10

0 1 2 3 4 5

 light quark
 c  quark
 b  quark

20 GeV

10 GeV

L (fm)

6
E 

(G
eV

)

Another dead cone: soft gluons
cannot be radiated at short path length 
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This is why heavy and light quarks radiate with similar rates 

at short time scales
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Mean value <z >h
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Production time/length

Jet features depend on two parameters, the hard scale      and jet energy E.Q2

Why the Lorentz factor does not make    longer at large     ?lp pT

(i) Energy dependence at fixed Q2

hdE/dli lp / Eis fixed, so 

(ii) Scale dependence at fixed energy

hdE/dli rises with   , so          is fallingQ2 lp(Q2)

For the leading hadron energy conservation constraint: lp . E

dE/dl
(1� zh)

Specifics of high-pT jets:         ; E = pT Q2 = p2
T

Energy and scale dependences of      in SIDIS:lp
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Quenching of high-p hadrons
T

17

BK, J.Nemchik, I.Potashnikova, I.Schmidt
 Phys.Rev. C86(2012)054904
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Exact solution: path integrals

One has to sum up all quark trajectories.

BK,  B.Zakharov, Phys.Rev. D44(1991)3466
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 Phys.Rev.C83(2011)021901
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ISI energy loss

10
-1

1

5 10 15 20 25

Au-Au   3s—NN = 200 GeV
0 - 5%

pT (GeV)

R
AA

q̂0 = 1.6GeV2/fm

19

10
-1

1

5 10 15 20 25
 0 - 10 %
20 - 30 %
40 - 50 %
60 - 70 %

Au-Au   3s—NN = 200 GeV

pT (GeV)
R

AA

Down to the RHIC energies
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The lower the energy is, the higher is xT
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Energy-loss scenario

Differently from the expectations based on the dead-cone 
effect, b-quarks and light flavors are suppressed similarly

Problems
E-loss scenario fails to explain suppression of leading hadrons
in SIDIS on nuclei

The transport coefficient fitted to data,
is too big compared with expected (BDMPS),

q̂0 = 13GeV2/fm
q̂0 ⇡ 1GeV2/fm

21

No broadening was observed in back-to-back photon-jet 
azimuthal correlation

The alternative probe, J/Psi suppression, leads to a different
value of q̂0 ⇡ 1GeV2/fm
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 Semi-inclusive deep-inelastic 
processes (SIDIS) can be used as a 
test for the suppression mechanism 
of high-pT hadrons.

h h

qq

A A A

? ?

ee′

cold nuclear
matter

hot nuclear
matter

q

SIDIS: testing hadronization models

W.T. Deng & X.N. Wang: Phys.Rev. C81 

zh
Advantages:
The medium density and 
geometry are well known;
q is known;

The jet energy and scale 
can be varied independently

^
Fails at large z , most important 
for high p  hadrons.

h

T
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Testing the models in SIDIS

B.K., J. Nemchik, E. Predazzi
&A. Hayashigaki               
Nucl. Phys. A 740, 211 (2004)

B.K., J. Nemchik, E. Predazzi
                1996

Predictions
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Summary

24

Energy deficit at large x  and x   due to initial dissipation 
of energy (proportional to the collision energy) in pA and AA 
collisions cause a suppression, observed in data.

TL

The dipole description is found to be successful and having a 
strong predictive power. The magnitude of the Cronin effect 
was well predicted prior the measurements at RHIC and LHC.

ALICE data for the Cronin effect provided the first direct 
evidence for weakness of gluon shadowing, proposed theoretically
and by some analyses of DIS data. Most of the popular models,
EKS98, EPS08, EPS09, including CGC models, turned out to 
grossly exaggerate the magnitude of gluon shadowing.
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The energy loss model failed to pass the test with data on 
nuclear suppression of SIDIS at large z , h

Summary

Attenuation of a high-p  dipole is the main source of the observed 
suppression.        rises with p  due to color transparency.
Dipoles experience no broadening in a medium.T

RAA
T

o

The model well describes available data on hadron suppression and 
azimuthal asymmetry at large p >7GeV with a single parameter 
q =1-2GeV/fm, consistent with expectations and with J/Psi data.^ 2 T

A high-p  jet with virtuality equal to its energy dissipates energy 
(in vacuum and in a medium) so fast that can produce a leading 
hadron (dipole) with large z  only on a very short time scale.
One should discriminate between single hadrons and jets, which 
take long time to be produced

h

T


